819 research outputs found
Strong Coupling Corrections to the Ginzburg-Landau Theory of Superfluid ^{3}He
In the Ginzburg-Landau theory of superfluid He, the free energy is
expressed as an expansion of invariants of a complex order parameter. Strong
coupling effects, which increase with increasing pressure, are embodied in the
set of coefficients of these order parameter invariants\cite{Leg75,Thu87}.
Experiments can be used to determine four independent combinations of the
coefficients of the five fourth order invariants. This leaves the
phenomenological description of the thermodynamics near incomplete.
Theoretical understanding of these coefficients is also quite limited. We
analyze our measurements of the magnetic susceptibility and the NMR frequency
shift in the -phase which refine the four experimental inputs to the
phenomenological theory. We propose a model based on existing experiments,
combined with calculations by Sauls and Serene\cite{Sau81} of the pressure
dependence of these coefficients, in order to determine all five fourth order
terms. This model leads us to a better understanding of the thermodynamics of
superfluid He in its various states. We discuss the surface tension of
bulk superfluid He and predictions for novel states of the superfluid
such as those that are stabilized by elastic scattering of quasiparticles from
a highly porous silica aerogel.Comment: 9 pages, 7 figures, 2 table
NN-VVC: Versatile Video Coding boosted by self-supervisedly learned image coding for machines
The recent progress in artificial intelligence has led to an ever-increasing
usage of images and videos by machine analysis algorithms, mainly neural
networks. Nonetheless, compression, storage and transmission of media have
traditionally been designed considering human beings as the viewers of the
content. Recent research on image and video coding for machine analysis has
progressed mainly in two almost orthogonal directions. The first is represented
by end-to-end (E2E) learned codecs which, while offering high performance on
image coding, are not yet on par with state-of-the-art conventional video
codecs and lack interoperability. The second direction considers using the
Versatile Video Coding (VVC) standard or any other conventional video codec
(CVC) together with pre- and post-processing operations targeting machine
analysis. While the CVC-based methods benefit from interoperability and broad
hardware and software support, the machine task performance is often lower than
the desired level, particularly in low bitrates. This paper proposes a hybrid
codec for machines called NN-VVC, which combines the advantages of an
E2E-learned image codec and a CVC to achieve high performance in both image and
video coding for machines. Our experiments show that the proposed system
achieved up to -43.20% and -26.8% Bj{\o}ntegaard Delta rate reduction over VVC
for image and video data, respectively, when evaluated on multiple different
datasets and machine vision tasks. To the best of our knowledge, this is the
first research paper showing a hybrid video codec that outperforms VVC on
multiple datasets and multiple machine vision tasks.Comment: ISM 2023 Best paper award winner versio
Orbital glass and spin glass states of 3He-A in aerogel
Glass states of superfluid A-like phase of 3He in aerogel induced by random
orientations of aerogel strands are investigated theoretically and
experimentally. In anisotropic aerogel with stretching deformation two glass
phases are observed. Both phases represent the anisotropic glass of the orbital
ferromagnetic vector l -- the orbital glass (OG). The phases differ by the spin
structure: the spin nematic vector d can be either in the ordered spin nematic
(SN) state or in the disordered spin-glass (SG) state. The first phase (OG-SN)
is formed under conventional cooling from normal 3He. The second phase (OG-SG)
is metastable, being obtained by cooling through the superfluid transition
temperature, when large enough resonant continuous radio-frequency excitation
are applied. NMR signature of different phases allows us to measure the
parameter of the global anisotropy of the orbital glass induced by deformation.Comment: 7 pages, 6 figures, Submitted to Pis'ma v ZhETF (JETP Letters
Pyrazine-Fused Triterpenoids Block the TRPA1 Ion Channel in Vitro and Inhibit TRPA1-Mediated Acute Inflammation in Vivo
TRPA1 is a nonselective cation channel, most famously expressed in nonmyelinated nociceptors. In addition to being an important chemical and mechanical pain sensor, TRPA1 has more recently appeared to have a role also in inflammation. Triterpenoids are natural products with anti-inflammatory and anticancer effects in experimental models. In this paper, 13 novel triterpenoids were created by synthetically modifying betulin, an abundant triterpenoid of the genus Betula L., and their TRPA1-modulating properties were examined. The Fluo 3-AM protocol was used in the initial screening, in which six of the 14 tested triterpenoids inhibited TRPA1 in a statistically significant manner. In subsequent whole-cell patch clamp recordings, the two most effective compounds (pyrazine-fused triterpenoids 8 and 9) displayed a reversible and dose- and voltage-dependent effect to block the TRPA1 ion channel at submicromolar concentrations. Interestingly, the TRPA1 blocking action was also evident in vivo, as compounds 8 and 9 both alleviated TRPA1 agonist-induced acute paw inflammation in mice. The results introduce betulin-derived pyrazine-fused triterpenoids as promising novel antagonists of TRPA1 that are potentially useful in treating diseases with a TRPA1-mediated adverse component
Analysis of Strong-Coupling Parameters for Superfluid 3He
Superfluid He experiments show strong deviation from the weak-coupling
limit of the Ginzburg-Landau theory, and this discrepancy grows with increasing
pressure. Strong-coupling contributions to the quasiparticle interactions are
known to account for this effect and they are manifest in the five
-coefficients of the fourth order Ginzburg-Landau free energy terms. The
Ginzburg-Landau free energy also has a coefficient to include magnetic
field coupling to the order parameter. From NMR susceptibility experiments, we
find the deviation of from its weak-coupling value to be negligible at
all pressures. New results for the pressure dependence of four different
combinations of -coefficients, _{345}, _{12},
_{245}, and _{5} are calculated and comparison is made with
theory.Comment: 6 pages, 2 figures, 1 table. Manuscript prepared for QFS200
Ward-Takahashi Identity with External Field in Ladder QED
We derive the Ward-Takahashi identity obeyed by the fermion-antifermion-gauge
boson vertex in ladder QED in the presence of a constant magnetic field. The
general structure in momentum space of the fermion mass operator with external
electromagnetic field is discussed. Using it we find the solutions of the
ladder WT identity with magnetic field. The consistency of our results with the
solutions of the corresponding Schwinger-Dyson equation ensures the gauge
invariance of the magnetic field induced chiral symmetry breaking recently
found in ladder QED.Comment: new references(refs.10,11) added, 18 pages, Late
Identification of a plasma signature of psychotic disorder in children and adolescents from the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort
The identification of an early biomarker of psychotic disorder is important as early treatment is associated with improved patient outcome. Metabolomic and lipidomic approaches in combination with multivariate statistical analysis were applied to identify plasma alterations in children (age 11) (38 cases vs 67 controls) and adolescents (age 18) (36 cases vs 117 controls) preceeding or coincident with the development of psychotic disorder (PD) at age 18 in the Avon Longitudinal Study of Parents and Children (ALSPAC). Overall, 179 lipids were identified at age 11, with 32 found to be significantly altered between the control and PD groups. Following correction for multiple comparisons, 8 of these lipids remained significant (lysophosphatidlycholines (LPCs) LPC(18:1), LPC(18:2), LPC(20:3); phosphatidlycholines (PCs) PC(32:2; PC(34:2), PC(36:4), PC(0-34-3) and sphingomyelin (SM) SM(d18:1/24:0)), all of which were elevated in the PD group. At age 18, 23 lipids were significantly different between the control and PD groups, although none remained significant following correction for multiple comparisons. In conclusion, the findings indicate that the lipidome is altered in the blood during childhood, long before the development of psychotic disorder. LPCs in particular are elevated in those who develop PD, indicating inflammatory abnormalities and altered phospholipid metabolism. These findings were not found at age 18, suggesting there may be ongoing alterations in the pathophysiological processes from prodrome to onset of PD
A high-content image analysis approach for quantitative measurements of chemosensitivity in patient-derived tumor microtissues
Organotypic, three-dimensional (3D) cancer models have enabled investigations of complex microtissues in increasingly realistic conditions. However, a drawback of these advanced models remains the poor biological relevance of cancer cell lines, while higher clinical significance would be obtainable with patient-derived cell cultures. Here, we describe the generation and data analysis of 3D microtissue models from patient-derived xenografts (PDX) of non-small cell lung carcinoma (NSCLC). Standard of care anti-cancer drugs were applied and the altered multicellular morphologies were captured by confocal microscopy, followed by automated image analyses to quantitatively measure phenotypic features for high-content chemosensitivity tests. The obtained image data were thresholded using a local entropy filter after which the image foreground was split into local regions, for a supervised classification into tumor or fibroblast cell types. Robust statistical methods were applied to evaluate treatment effects on growth and morphology. Both novel and existing computational approaches were compared at each step, while prioritizing high experimental throughput. Docetaxel was found to be the most effective drug that blocked both tumor growth and invasion. These effects were also validated in PDX tumors in vivo. Our research opens new avenues for high-content drug screening based on patient-derived cell cultures, and for personalized chemosensitivity testing
- …