52,178 research outputs found

    Checklist of the Helminth Parasites of South American Bats

    Get PDF
    My Brazilian co-author paid for this paper to be open--access.Copyright © 2001-2015 Magnolia Press. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The attached file is the published version of the article

    Entropic Law of Force, Emergent Gravity and the Uncertainty Principle

    Full text link
    The entropic formulation of the inertia and the gravity relies on quantum, geometrical and informational arguments. The fact that the results are completly classical is missleading. In this paper we argue that the entropic formulation provides new insights into the quantum nature of the inertia and the gravity. We use the entropic postulate to determine the quantum uncertainty in the law of inertia and in the law of gravity in the Newtonian Mechanics, the Special Relativity and in the General Relativity. These results are obtained by considering the most general quantum property of the matter represented by the Uncertainty Principle and by postulating an expression for the uncertainty of the entropy such that: i) it is the simplest quantum generalization of the postulate of the variation of the entropy and ii) it reduces to the variation of the entropy in the absence of the uncertainty.Comment: 10 pages. Important discussion of the special relativistic case and the newtonian limit of the general relativistic case added. The paper has been reformatted. The authorship listing corrected. (It has been published by mistake out of order in the first version. We have been adhering to the Hardy-Littlewood Rule over the years.) Typos corrected. Four references adde

    Wave Equations for Classical Two-Component Proca Fields in Curved Spacetimes with Torsionless Affinities

    Full text link
    The world formulation of the full theory of classical Proca fields in generally relativistic spacetimes is concisely reviewed and the entire set of pertinent field equations is transcribed in a straightforward way into the framework of one of the Infeld-van der Waerden formalisms. Some well-known calculational techniques are then utilized for deriving the wave equations that control the propagation of the fields allowed for. It appears that no interaction couplings between such fields and electromagnetic curvatures are carried by the wave equations at issue. What results is, in effect, that the only interactions which ultimately occur in the theoretical context under consideration involve strictly Proca fields and wave functions for gravitons.Comment: Many improvements on the paper have still been made. In particular, its title has been modified so as to conform further to one of its main aim

    SOAP 2.0: A tool to estimate the photometric and radial velocity variations induced by stellar spots and plages

    Full text link
    This paper presents SOAP 2.0, a new version of the SOAP code that estimates in a simple way the photometric and radial velocity variations induced by active regions. The inhibition of the convective blueshift inside active regions is considered, as well as the limb brightening effect of plages, a quadratic limb darkening law, and a realistic spot and plage contrast ratio. SOAP 2.0 shows that the activity-induced variation of plages is dominated by the inhibition of the convective blueshift effect. For spots, this effect becomes significant only for slow rotators. In addition, in the case of a major active region dominating the activity-induced signal, the ratio between the full width at half maximum (FWHM) and the RV peak-to-peak amplitudes of the cross correlation function can be used to infer the type of active region responsible for the signal for stars with \vsini8\le8\kms. A ratio smaller than three implies a spot, while a larger ratio implies a plage. Using the observation of HD189733, we show that SOAP 2.0 manages to reproduce the activity variation as well as previous simulations when a spot is dominating the activity-induced variation. In addition, SOAP 2.0 also reproduces the activity variation induced by a plage on the slowly rotating star α\alpha Cen B, which is not possible using previous simulations. Following these results, SOAP 2.0 can be used to estimate the signal induced by spots and plages, but also to correct for it when a major active region is dominating the RV variation.Comment: 28 pages, 15 figures, accepted for publication in ApJ after minor revisions (taken into account in this version
    corecore