95 research outputs found

    The 2005 - 2007 Bala (Ankara, central Turkey) earthquakes: a case study for strike-slip fault terminations

    Get PDF
    An intense seismic activity has been observed after the Bala (Ankara, NW central Turkey) earthquakes (30 July 2005: Mw=5.3, 20 December 2007: Mw=5.4, and 26 December 2007: Mw=5.3), continuing up to the present. The epicenters and the focal mechanism solutions of the earthquakes indicate that the right lateral strike-slip Afşar fault, trending N55-60°W, is responsible for the main shocks. The Afşar fault is thought to be the NW continuation of the Tuzgölü fault zone, which is one of the main neotectonic elements in central Anatolia. On the other hand, the aftershock distributions of the 2005 event have a NNE trend, and those of the 2007 event show a NW trending. Some focal mechanism solutions of the 2005 Bala earthquake aftershocks indicate normal and oblique normal faulting that corresponds to the NNE-trending Karakeçili fault. It seems that seismic activation of the NNE-trending Karakeçili fault was triggered by the 2005 main shock (Mw=5.3) that occurred on the NW trending right lateral strike-slip Afşar fault. The overall neotectonic framework is that the northwestern edge of the Tuzgölü fault zone, represented by the Afşar fault in Bala, terminates in an extensional system represented by the oblique-slip Karakeçili fault

    Forward modelling of brightness variations in Sun-like stars -- II. Light curves and variability

    Full text link
    The amplitude and morphology of light curves of solar-like stars change substantially with increasing rotation rate: brightness variations get amplified and become more regular, which has so far not been explained. We develop a modelling approach for calculating brightness variations of stars with various rotation rates and use it to explain observed trends in stellar photometric variability. We combine numerical simulations of magnetic Flux Emergence And Transport (FEAT) with a model for stellar brightness variability to calculate synthetic light curves of stars as observed by the Kepler telescope. We compute the distribution of magnetic flux on the stellar surface for various rotation rates and degrees of active-region nesting (i.e., the tendency of active regions to emerge in the vicinity of recently emerged ones). Using the resulting maps of the magnetic flux, we compute the rotational variability of our simulated stellar light curves as a function of rotation rate and nesting of magnetic features and compare our calculations to Kepler observations. We show that both rotation rate and degree of nesting have a strong impact on the amplitude and morphology of stellar light curves. In order to explain the variability of the bulk of \K{} targets with known rotation rates, we need to increase the degree of nesting to values much larger than on the Sun. The suggested increase of nesting with the rotation rate can provide clues to the flux emergence process for high levels of stellar activity.Comment: 10 pages, 15 figure

    European Vegetation Archive (EVA): An integrated database of European vegetation plots

    Get PDF
    © 2016 International Association for Vegetation Science. The European Vegetation Archive (EVA) is a centralized database of European vegetation plots developed by the IAVS Working Group European Vegetation Survey. It has been in development since 2012 and first made available for use in research projects in 2014. It stores copies of national and regional vegetation- plot databases on a single software platform. Data storage in EVA does not affect on-going independent development of the contributing databases, which remain the property of the data contributors. EVA uses a prototype of the database management software TURBOVEG 3 developed for joint management of multiple databases that use different species lists. This is facilitated by the SynBioSys Taxon Database, a system of taxon names and concepts used in the individual European databases and their corresponding names on a unified list of European flora. TURBOVEG 3 also includes procedures for handling data requests, selections and provisions according to the approved EVA Data Property and Governance Rules. By 30 June 2015, 61 databases from all European regions have joined EVA, contributing in total 1 027 376 vegetation plots, 82% of them with geographic coordinates, from 57 countries. EVA provides a unique data source for large-scale analyses of European vegetation diversity both for fundamental research and nature conservation applications. Updated information on EVA is available online at http://euroveg.org/eva-database
    corecore