430 research outputs found

    Physicochemical Properties of Glycine-Based Ionic Liquid [QuatGly-OEt][EtOSO3] (2-Ethoxy-1-ethyl-1,1-dimethyl-2-oxoethanaminium ethyl sulfate) and Its Binary Mixtures with Poly(ethylene glycol) (Mw = 200) at Various Temperatures

    Get PDF
    This work includes specific basic characterization of synthesized glycine-based Ionic Liquid (IL) [QuatGly-OEt][EtOSO3] by NMR, elementary analysis and water content. Thermophysical properties such as density, ρ, viscosity, η, refractive index, n, and conductivity, Îș, for the binary mixture of [QuatGly-OEt][EtOSO3] with poly(ethylene glycol) (PEG) [Mw = 200] are measured over the whole composition range. The temperature dependence of density and dynamic viscosity for neat [QuatGly-OEt][EtOSO3] and its binary mixture can be described by an empirical polynomial equation and by the Vogel-Tammann-Fucher (VTF) equation, respectively. The thermal expansion coefficient of the ILs is ascertained using the experimental density results, and the excess volume expansivity is evaluated. The negative values of excess molar volume for the mixture indicate the ion-dipole interactions and packing between IL and PEG oligomer. The results of binary excess property (VmE ) and deviations (Δη, Δxn, Διn, ΔxR, and ΔιR) are discussed in terms of molecular interactions and molecular structures in the binary mixture

    Molecular dynamics simulation studies of the interactions between ionic liquids and amino acids in aqueous solution

    Get PDF
    Although the understanding of the influence of ionic liquids (ILs) on the solubility behavior of biomolecules in aqueous solutions is relevant for the design and optimization of novel biotechnological processes, the underlying molecular-level mechanisms are not yet consensual or clearly elucidated. In order to contribute to the understanding of the molecular interactions established between amino acids and ILs in aqueous media, classical molecular dynamics (MD) simulations were performed for aqueous solutions of five amino acids with different structural characteristics (glycine, alanine, valine, isoleucine, and glutamic acid) in the presence of 1-butyl-3-methylimidazolium bis(trifluoromethyl)sulfonyl imide. The results from MD simulations enable to relate the properties of the amino acids, namely their hydrophobicity, to the type and strength of their interactions with ILs in aqueous solutions and provide an explanation for the direction and magnitude of the solubility phenomena observed in [IL + amino acid + water] systems by a mechanism governed by a balance between competitive interactions of the IL cation, IL anion, and water with the amino acids

    Highly Luminescent Salts Containing Well-Shielded Lanthanide-Centered Complex Anions and Bulky Imidazolium Countercations

    Get PDF
    In this paper, we report on the syntheses, structures, and characterization of four molten salts containing imidazolium cations and europium(III)- or terbium(III)-centered complex anions. In the complex anions, the lanthanide centers are wrapped by four pseudodiketonate anionic ligands, which prevent them from contacting with high-frequency oscillators and allow them to show intense characteristic europium(III) or terbium(III) emission, small line widths, high color purity, high quantum yields (30−49%), and long decay times (\u3e2 ms)

    Raman Spectroscopy and Ab-Initio Model Calculations on Ionic Liquids:Invited Review

    Get PDF

    Ionic liquids at electrified interfaces

    Get PDF
    Until recently, “room-temperature” (<100–150 °C) liquid-state electrochemistry was mostly electrochemistry of diluted electrolytes(1)–(4) where dissolved salt ions were surrounded by a considerable amount of solvent molecules. Highly concentrated liquid electrolytes were mostly considered in the narrow (albeit important) niche of high-temperature electrochemistry of molten inorganic salts(5-9) and in the even narrower niche of “first-generation” room temperature ionic liquids, RTILs (such as chloro-aluminates and alkylammonium nitrates).(10-14) The situation has changed dramatically in the 2000s after the discovery of new moisture- and temperature-stable RTILs.(15, 16) These days, the “later generation” RTILs attracted wide attention within the electrochemical community.(17-31) Indeed, RTILs, as a class of compounds, possess a unique combination of properties (high charge density, electrochemical stability, low/negligible volatility, tunable polarity, etc.) that make them very attractive substances from fundamental and application points of view.(32-38) Most importantly, they can mix with each other in “cocktails” of one’s choice to acquire the desired properties (e.g., wider temperature range of the liquid phase(39, 40)) and can serve as almost “universal” solvents.(37, 41, 42) It is worth noting here one of the advantages of RTILs as compared to their high-temperature molten salt (HTMS)(43) “sister-systems”.(44) In RTILs the dissolved molecules are not imbedded in a harsh high temperature environment which could be destructive for many classes of fragile (organic) molecules

    Deep Eutectic Solvents (DESs) and their applications [forthcoming]

    Get PDF
    Deep Eutectic Solvents (DESs) and Their Application
    • 

    corecore