31,978 research outputs found

    Plasmon-enhanced generation of non-classical light

    Full text link
    Strong light-matter interactions enabled by surface plasmons have given rise to a wide range of photonic, optoelectronic and chemical functionalities. In recent years, the interest in this research area has focused on the quantum regime, aiming to developing ultra-compact nanoscale instruments operating at the single (few) photon(s) level. In this perspective, we provide a general overview of recent experimental and theoretical advances as well as near-future challenges towards the design and implementation of plasmon-empowered quantum optical and photo-emitting devices based on the building blocks of nanophotonics technology: metallo-dielectric nanostructures and microscopic light sources

    A Model for Selecting the Most Cost-Effective Pressure Control Device for More Sustainable Water Supply Networks

    Get PDF
    Pressure Reducing Valves (PRV) have been widely used as a device to control pressure at nodes in water distribution networks and thus reduce leakages. However, an energy dissipation takes place during PRV operation. Thus, micro-hydropower turbines and, more precisely, Pump As Turbines (PAT) could be used as both leakage control and energy generating devices, thus contributing to a more sustainable water supply network. Studies providing clear guidelines for the determination of the most cost-effective device (PRV or PAT) analysing a wide database and considering all the costs involved, the water saving and the eventual power generation, have not been carried out to date. A model to determine the most cost-effective device has been developed, taking into account the Net Present Value (NPV). The model has been applied to two case studies: A database with 156 PRVs sites located in the UK; and a rural water supply network in Ireland with three PRVs. The application of the model showed that although the investment cost associated to the PRV installation is lower in the majority of cases, the NPV over the lifespan of the PAT is higher than the NPV associated with the PRV operation. Furthermore, the ratio between the NPV and the water saved over the lifespan of the PAT/PRV also offered higher values (from 6% to 29%) for the PAT installation, making PATs a more cost-effective and more sustainable means of pressure control in water distribution networks. Finally, the development of less expensive turbines and/or PATs adapted to work under different flow-head conditions will tip the balance toward the installation of these devices even further

    Geometric Algebras and Extensors

    Full text link
    This is the first paper in a series (of four) designed to show how to use geometric algebras of multivectors and extensors to a novel presentation of some topics of differential geometry which are important for a deeper understanding of geometrical theories of the gravitational field. In this first paper we introduce the key algebraic tools for the development of our program, namely the euclidean geometrical algebra of multivectors Cl(V,G_{E}) and the theory of its deformations leading to metric geometric algebras Cl(V,G) and some special types of extensors. Those tools permit obtaining, the remarkable golden formula relating calculations in Cl(V,G) with easier ones in Cl(V,G_{E}) (e.g., a noticeable relation between the Hodge star operators associated to G and G_{E}). Several useful examples are worked in details fo the purpose of transmitting the "tricks of the trade".Comment: This paper (to appear in Int. J. Geom. Meth. Mod. Phys. 4 (6) 2007) is an improved version of material appearing in math.DG/0501556, math.DG/0501557, math.DG/050155

    The U(1) phase transition on toroidal and spherical lattices

    Full text link
    We have studied the properties of the phase transition in the U(1) compact pure gauge model paying special atention to the influence of the topology of the boundary conditions. From the behavior of the energy cumulants and the observation of an effective \nu -> 1/d on toroidal and spherical lattices, we conclude that the transition is first order.Comment: LATTICE98(gauge

    The mass and environmental dependence on the secular processes of AGN in terms of morphology, colour, and specific star-formation rate

    Full text link
    Galaxy mass and environment play a major role in the evolution of galaxies. In the transition from star-forming to quenched galaxies, Active galactic nuclei (AGN) have also a principal action. However, the connections between these three actors are still uncertain. In this work we investigate the effects of stellar mass and the large-scale environment (LSS), on the fraction of optical nuclear activity in a population of isolated galaxies, where AGN would not be triggered by recent galaxy interactions or mergers. As a continuation of a previous work, we focus on isolated galaxies to study the effect of stellar mass and the LSS in terms of morphology (early- and late-type), colour (red and blue), and specific star formation rate (quenched and star-forming). To explore where AGN activity is affected by the LSS we fix the stellar mass into low- and high-mass galaxies. We use the tidal strength parameter to quantify their effects. We found that AGN is strongly affected by stellar mass in 'active' galaxies (namely late-type, blue, and star-forming), however it has no influence for 'quiescent' galaxies (namely early-type, red, and quenched), at least for masses down to 1010[M]\rm 10^{10}\,[M_\odot]. In relation to the LSS, we found an increment on the fraction of SFN with denser LSS in low-mass star forming and red isolated galaxies. Regarding AGN, we find a clear increment of the fraction of AGN with denser environment in quenched and red isolated galaxies, independently of the stellar mass. AGN activity would be 'mass triggered' in 'active' isolated galaxies. This means that AGN is independent of the intrinsic property of the galaxies, but on its stellar mass. On the other hand, AGN would be 'environment triggered' in 'quiescent' isolated galaxies, where the fraction of AGN in terms of sSFR and colour increases from void regions to denser LSS, independently of its stellar mass.Comment: 14 pages, 9 figures (11 pages and 6 figures without appendix), accepted for publication in Astronomy & Astrophysic

    ¿Investigación en atención primaria?

    Get PDF

    Reply to Comment on "Magnetization Process of Single Molecule Magnets at Low Temperatures"

    Full text link
    This is the reply to a Comment by I.S.Tupitsyn and P.C.E. Stamp (PRL v92,119701 (2004)) on a letter of ours (J.F.Fernandez and J.J.Alonso, PRL v91, 047202 (2003)).Comment: 2 LaTeX pages, 1 eps figure. Submitted to PRL on 20 October 200
    corecore