34 research outputs found

    The TGF-beta-Pseudoreceptor BAMBI is strongly expressed in COPD lungs and regulated by nontypeable Haemophilus influenzae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nontypeable <it>Haemophilus influenzae </it>(NTHI) may play a role as an infectious trigger in the pathogenesis of chronic obstructive pulmonary disease (COPD). Few data are available regarding the influence of acute and persistent infection on tissue remodelling and repair factors such as transforming growth factor (TGF)-β.</p> <p>Methods</p> <p>NTHI infection in lung tissues obtained from COPD patients and controls was studied <it>in vivo </it>and using an <it>in vitro model</it>. Infection experiments were performed with two different clinical isolates. Detection of NTHI was done using <it>in situ </it>hybridization (ISH) in unstimulated and in <it>in vitro </it>infected lung tissue. For characterization of TGF-β signaling molecules a transcriptome array was performed. Expression of the TGF-pseudoreceptor BMP and Activin Membrane-bound Inhibitor (BAMBI) was analyzed using immunohistochemistry (IHC), ISH and PCR. CXC chemokine ligand (CXCL)-8, tumor necrosis factor (TNF)-α and TGF-β expression were evaluated in lung tissue and cell culture using ELISA.</p> <p>Results</p> <p>In 38% of COPD patients infection with NTHI was detected <it>in vivo </it>in contrast to 0% of controls (p < 0.05). Transcriptome arrays showed no significant changes of TGF-β receptors 1 and 2 and Smad-3 expression, whereas a strong expression of BAMBI with upregulation after <it>in vitro </it>infection of COPD lung tissue was demonstrated. BAMBI was expressed ubiquitously on alveolar macrophages (AM) and to a lesser degree on alveolar epithelial cells (AEC). Measurement of cytokine concentrations in lung tissue supernatants revealed a decreased expression of TGF-β (p < 0.05) in combination with a strong proinflammatory response (p < 0.01).</p> <p>Conclusions</p> <p>We show for the first time the expression of the TGF pseudoreceptor BAMBI in the human lung, which is upregulated in response to NTHI infection in COPD lung tissue <it>in vivo </it>and <it>in vitro</it>. The combination of NTHI-mediated induction of proinflammatory cytokines and inhibition of TGF-β expression may influence inflammation induced tissue remodeling.</p

    Advanced glycation end products cause increased CCN family and extracellular matrix gene expression in the diabetic rodent retina

    Get PDF
    Aims/hypothesis Referred to as CCN, the family of growth factors consisting of cystein-rich protein 61 (CYR61, also known as CCN1), connective tissue growth factor (CTGF, also known as CCN2), nephroblastoma overexpressed gene (NOV, also known as CCN3) and WNT1-inducible signalling pathway proteins 1, 2 and 3 (WISP1, -2 and -3; also known as CCN4, -5 and -6) affects cellular growth, differentiation, adhesion and locomotion in wound repair, fibrotic disorders, inflammation and angiogenesis. AGEs formed in the diabetic milieu affect the same processes, leading to diabetic complications including diabetic retinopathy. We hypothesised that pathological effects of AGEs in the diabetic retina are a consequence of AGE-induced alterations in CCN family expression. Materials and methods CCN gene expression levels were studied at the mRNA and protein level in retinas of control and diabetic rats using real-time quantitative PCR, western blotting and immunohistochemistry at 6 and 12 weeks of streptozotocin-induced diabetes in the presence or absence of aminoguanidine, an AGE inhibitor. In addition, C57BL/6 mice were repeatedly injected with exogenously formed AGE to establish whether AGE modulate retinal CCN growth factors in vivo. Results After 6 weeks of diabetes, Cyr61 expression levels were increased more than threefold. At 12 weeks of diabetes, Ctgf expression levels were increased twofold. Treatment with aminoguanidine inhibited Cyr61 and Ctgf expression in diabetic rats, with reductions of 31 and 36%, respectively, compared with untreated animals. Western blotting showed a twofold increase in CTGF production, which was prevented by aminoguanidine treatment. In mice infused with exogenous AGE, Cyr61 expression increased fourfold and Ctgf expression increased twofold in the retina. Conclusion/interpretation CTGF and CYR61 are downstream effectors of AGE in the diabetic retina, implicating them as possible targets for future intervention strategies against the development of diabetic retinopath

    Latent transforming growth factor binding protein 4 (LTBP4) is downregulated in mouse and human DCIS and mammary carcinomas

    Get PDF
    Transforming growth factor beta (TGF-) is able to inhibit the proliferation of epithelial cells and is involved in the carcinogenesis of mammary tumors. Three latent transforming growth factor- binding proteins (LTBPs) are known to modulate TGF- functions. The current study analyses the expression profiles of LTBP4, its isoforms LTBP1 and LTBP3, and TGF-1, TGF-2, TGF-3, and SMAD2, SMAD3 and SMAD4 in human and murine (WAP-TNP8) DCIS compared to invasive mammary tumors. Additionally mammary malignant (MCF7, Hs578T, MDA-MB361) and non malignant cell lines (Hs578BsT) were analysed. Microarray, q-PCR, immunoblot, immunohistochemistry and immunofluorescence were used. In comparison to non-malignant tissues (n = 5), LTBP4 was downregulated in all human and mouse DCIS (n = 9) and invasive mammary adenocarcinomas (n = 5) that were investigated. We also found decreased expression of bone morphogenic protein 4 (BMP4) and increased expression of its inhibitor gremlin (GREM1). Treatment of the mammary tumor cell line (Hs578T) with recombinant TGF-1 rescued BMP4 and GREM1 expression. We conclude that the lack of LTBP4-mediated targeting in malignant mammary tumor tissues may lead to a possible modification of TGF-1 and BMP bioavailability and function

    Application of a risk-management framework for integration of stromal tumor-infiltrating lymphocytes in clinical trials

    Get PDF

    Pitfalls in assessing stromal tumor infiltrating lymphocytes (sTILs) in breast cancer

    Get PDF

    Application of a risk-management framework for integration of stromal tumor-infiltrating lymphocytes in clinical trials

    Get PDF
    Stromal tumor-infiltrating lymphocytes (sTILs) are a potential predictive biomarker for immunotherapy response in metastatic triple-negative breast cancer (TNBC). To incorporate sTILs into clinical trials and diagnostics, reliable assessment is essential. In this review, we propose a new concept, namely the implementation of a risk-management framework that enables the use of sTILs as a stratification factor in clinical trials. We present the design of a biomarker risk-mitigation workflow that can be applied to any biomarker incorporation in clinical trials. We demonstrate the implementation of this concept using sTILs as an integral biomarker in a single-center phase II immunotherapy trial for metastatic TNBC (TONIC trial, NCT02499367), using this workflow to mitigate risks of suboptimal inclusion of sTILs in this specific trial. In this review, we demonstrate that a web-based scoring platform can mitigate potential risk factors when including sTILs in clinical trials, and we argue that this framework can be applied for any future biomarker-driven clinical trial setting

    Review of mathematical programming applications in water resource management under uncertainty

    Get PDF

    LTBP-2 competes with tropoelastin for binding to fibulin-5 and heparin, and is a negative modulator of elastinogenesis

    No full text
    Latent transforming growth factor-beta-1 binding protein-2 (LTBP-2) is a protein of ill-defined function associated with elastic fibers during elastinogenesis. Although LTBP-2 binds fibrillin-1, fibulin-5, and heparin/heparan sulfate, molecules critical for normal elastic fiber assembly, it does not interact directly with elastin or its precursor, tropoelastin. We investigated the modulating effect of LTBP-2 on two key interactions of tropoelastin during elastinogenesis a) with fibulin-5 and b) with heparan sulfate (using heparin). Firstly, using solid phase assays we showed that LTBP-2 bound fibulin-5 (Kd=26.47±5.68 nM) with an affinity similar to that of the tropoelastin-fibulin-5 interaction (Kd=24.66±5.64 nM). Then using a competitive binding assay we showed that LTBP-2 inhibited the tropoelastin-fibulin-5 interaction in a dose dependent manner with almost complete inhibition obtained with 5-fold molar excess of LTBP-2. Interestingly, a fragment of LTBP-2 containing the fibulin-5 binding sequence only partially inhibited the tropoelasin-fibulin-5 interaction suggesting that LTBP-2 was directly blocking only the C-terminal tropoelastin binding site on fibulin-5 and indirectly blocking tropoelastin binding to the N-terminal region. In parallel experiments heparin was shown to have minor inhibitory effects on fibulin-5 interactions with tropoelastin and LTBP-2. However, LTBP-2 was shown to significantly inhibit the binding of heparin to tropoelastin with 50% inhibition achieved with 10 fold molar excess of LTBP-2. Confocal microscopy of fibroblast matrix showed strong co-distribution of LTBP-2 with fibulin-5 and fibrillin-1 and partial co-distribution with heparan sulfate proteoglycans, perlecan and syndecan-4. Also addition of exogenous LTBP-2 to ear cartilage chondrocyte cultures blocked elastinogenesis in a concentration-dependent manner. Overall the results indicate that LTBP-2 may have a negative regulatory role during elastic fiber assembly, perhaps in displacing elastin microassemblies from complexes with fibulin-5 and/or cell surface heparan sulfate proteoglycans.Mohamed A. Sideek, Clementine Menz, Mahroo K. Parsi and Mark A. Gibso
    corecore