7 research outputs found

    Interactions of Ionic Liquids and Spirocyclic Compounds with Liposome Model Membranes. A Steady-State Fluorescence Anisotropy Study

    Get PDF
    Understanding the toxicity of ionic liquids (ILs) is crucial in the search of greener chemicals. By comparing in vivo toxicity and in vitro interactions determined between compounds and biomimetic lipid membranes, more detailed toxicity vs. structure relation can be obtained. However, determining the interactions between non-surface-active compounds and liposomes has been a challenging task. Organisational changes induced by ILs and IL-like spirocyclic compounds within 1,6-diphenyl-1,3,5-hexatriene-doped biomimetic liposomes was studied by steady-state fluorescence anisotropy technique. The extent of organisational changes detected within the liposome bilayers were compared to the toxicity of the compounds determined using Vibrio Fischeri bacteria. Four liposome compositions made of pure 1-palmitoyl-2-oleyl-sn-glycero-3-phosphocoline (POPC) and mixtures of POPC, 1-palmitoyl-2-oleyl-sn-glycero-3-phosphoserine (POPS), and cholesterol (Chol) were tested as biomimetic models. Changes observed within the POPC/POPS/Chol 55:20:25 bilayers correlated the best with the toxicity results: ten out of twelve compounds followed the trend of increasing bilayer disorder - increasing toxicity. The study suggests that the toxicity of non-surface-active compounds is dependent on their ability to diffuse into the bilayers. The extent of bilayer's organisational changes correlates rather well with the toxicity of the compounds. Highly sensitive technique, such as fluorescence anisotropy measurements, is needed for detecting subtle changes within the bilayer structures.Peer reviewe

    Physical Properties of 7-Methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene (mTBD)

    Get PDF
    7-Methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene (mTBD) has useful catalytic properties and can form an ionic liquid when mixed with an acid. Despite its potential usefulness, no data on its thermodynamic and transport properties are currently available in the literature. Here we present the first reliable public data on the liquid vapor pressure (temperature from 318.23K to 451.2K and pressure from 11.1Pa to 10000Pa), liquid compressed density (293.15K to 473.15K and 0.092MPa to 15.788MPa), liquid isobaric heat capacity (312.48K to 391.50K), melting properties, liquid thermal conductivity (299.0K to 372.9K), liquid refractive index (293.15K to 343.15K), liquid viscosity (290.79K to 363.00K), liquid-vapor enthalpy of vaporization (318.23K to 451.2K), liquid thermal expansion coefficient (293.15K to 473.15K), and liquid isothermal compressibility of mTBD (293.15K to 473.15). The properties of mTBD were compared with those of other relevant compounds, including 1,5-diazabicyclo(4.3.0)non-5-ene (DBN), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), and 1,1,3,3-tetramethylguanidine (TMG). We used the PC-SAFT equation of state to model the thermodynamic properties of mTBD, DBN, DBU, and TMG. The PC-SAFT parameters were optimized using experimental data.Peer reviewe

    Physical properties of 7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene (mTBD)

    No full text
    We measured the physical and thermodynamic properties of 7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene (mTBD)

    Physical properties of 7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene (mTBD)

    No full text
    7-Methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene (mTBD) has useful catalytic properties and can form an ionic liquid when mixed with an acid. Despite its potential usefulness, no data on its thermodynamic and transport properties is currently available in the literature. Here we present the first reliable public data on the liquid vapor pressure (temperature from 318.23 K to 451.2 K and pressure from 11.1 Pa to 10 000 Pa), liquid compressed density (293.15 K to 473.15 K and 0.092 MPa to 15.788 MPa), liquid isobaric heat capacity (312.48 K to 391.50 K), melting properties, liquid thermal conductivity (299.0 K to 372.9 K), liquid refractive index (293.15 K to 343.15 K), liquid viscosity (290.79 K to 363.00 K), liquid–vapor enthalpy of vaporization (318.23 K to 451.2 K), liquid thermal expansion coefficient (293.15 K to 473.15 K), and liquid isothermal compressibility of mTBD (293.15 K to 473.15). The properties of mTBD were compared with those of other relevant compounds, including 1,5-diazabicyclo(4.3.0)non-5-ene (DBN), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), and 1,1,3,3‐tetramethylguanidine (TMG). We used the PC-SAFT equation of state to model the thermodynamic properties of mTBD, DBN, DBU, and TMG. The PC-SAFT parameters were optimized using experimental data
    corecore