399 research outputs found

    Proteomic analysis of Bifidobacterium longum subsp. infantis reveals the metabolic insight on consumption of prebiotics and host glycans.

    Get PDF
    Bifidobacterium longum subsp. infantis is a common member of the intestinal microbiota in breast-fed infants and capable of metabolizing human milk oligosaccharides (HMO). To investigate the bacterial response to different prebiotics, we analyzed both cell wall associated and whole cell proteins in B. infantis. Proteins were identified by LC-MS/MS followed by comparative proteomics to deduce the protein localization within the cell. Enzymes involved in the metabolism of lactose, glucose, galactooligosaccharides, fructooligosaccharides and HMO were constitutively expressed exhibiting less than two-fold change regardless of the sugar used. In contrast, enzymes in N-Acetylglucosamine and sucrose catabolism were induced by HMO and fructans, respectively. Galactose-metabolizing enzymes phosphoglucomutase, UDP-glucose 4-epimerase and UTP glucose-1-P uridylytransferase were expressed constitutively, while galactokinase and galactose-1-phosphate uridylyltransferase, increased their expression three fold when HMO and lactose were used as substrates for cell growth. Cell wall-associated proteomics also revealed ATP-dependent sugar transport systems associated with consumption of different prebiotics. In addition, the expression of 16 glycosyl hydrolases revealed the complete metabolic route for each substrate. Mucin, which possesses O-glycans that are structurally similar to HMO did not induced the expression of transport proteins, hydrolysis or sugar metabolic pathway indicating B. infantis do not utilize these glycoconjugates

    Tetramethyl-O-scutellarin isolated from peels of immature Shiranuhi fruit exhibits anti-inflammatory effects on LPSinduced RAW264.7 cells

    Get PDF
    Purpose: To investigate the anti-inflammatory activity of the ethanol extract of the immature fruit of a citrus, Shiranuhi, and to identify the active ingredient.Methods: The immature Shiranuhi peel was extracted with 80 % ethanol, and the extract was fractionated with solvents (n-hexane, ethyl acetate and n-butanol) to afford the corresponding fractions and water residue. Among them, the EtOAc-soluble portion was subjected to medium pressure liquid chromatography (MPLC) over a reversed-phase SiO2 column to give compound 1. The isolated compound was identified based on the proton and carbon nuclear magnetic resonance (NMR) spectra. The release of nitric oxide, prostaglandin (PG)E2, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 secreted by mouse macrophages was measured using RAW264.7 cell culture supernatant.Results: Shiranuhi (Korean name, Hallabong) is an important citrus species cultivated in Jeju Island, Korea. A polymethoxyflavonoid (PMF), tetramethyl-O-scutellarin (1), was isolated from the peels of immature Shiranuhi fruit. Upon the evaluation of anti-inflammatory effects, the flavonoid 1 decreased the nitric oxide production in macrophage cells with high efficiency, viz, 50 % inhibition concentration, IC50 of 57.4 μM. Subsequent studies demonstrated that PMF 1 effectively inhibited the generation of PGE2, TNF-α, IL-1β, and IL-6 cytokine in a dose-dependent manner.Conclusion: Tetramethyl-O-scutellarin (1) has been successfully isolated from Shiranuhi species for the first time. Thus, Shiranuhi fruit peel extract containing PMF 1 can potentially be applied as an antiinflammatory ingredient in food or cosmetic industries.Keywords: Shiranuhi fruit, Nitric oxide, Tetramethyl-O-scutellarin, Anti-inflammator

    Acute Symptoms after a Community Hydrogen Fluoride Spill

    Get PDF
    OBJECTIVES: This study was conducted to describe the demographic characteristics, and clinical signs and symptoms of patients who visited a general hospital because of the release of chemically hazardous hydrogen fluoride that occurred on September 27, 2012 in Gumi City, Korea. METHODS: The medical records at 1 general hospital 9 km from the accident site were reviewed using a standardized survey format. There were 1,890 non-hospitalized and 12 hospitalized patients exposed to hydrogen fluoride between September 27 and October 13 2012. RESULTS: Among the 12 hospitalized patients, 11 were discharged within 1 week and the other was hospitalized for 10 days. The chief complaints were respiratory symptoms such as hemoptysis and shortness of breath, gastrointestinal symptoms, neurologic symptoms, sore throat, and lip burn. The number of non-hospitalized patients exhibited a bimodal distribution, peaking on the first and twelfth days after the accident. Their chief complaints were sore throat (24.1%), headache (19.1%), cough (13.1%), and eye irritation (9.2%); some patients were asymptomatic (6.2%). Patients who visited the hospital within 3 days (early patients) of the spill more often had shortness of breath (27.0%) and nausea (6.3%) as the chief complaints than patients who visited after 3 days (late patients) (3.5% and 2.6%, respectively). However, cough and rhinorrhea were more common in the late patients (14.0% and 3.3%, respectively) than in the early patients (5.0% and 0.0%, respectively). Patients who were closer to the accident site more often had shortness of breath and sputum as the chief complaints than patients who were farther away. The mean serum calcium concentration was 9.37 mg/dL (range: 8.4–11.0 mg/dL); none of the patients had a decreased serum calcium level. Among 48 pulmonary function test results, 4 showed decreased lung function. None of the patients had abnormal urine fluoride levels on the eighth day after exposure. CONCLUSIONS: Patients hospitalized due to chemical hazard release of hydrogen fluoride had acute respiratory, gastrointestinal, and neurologic health problems. Non-hospitalized patients have acute symptoms mainly related to upper respiratory irritation

    Human dopamine receptor nanovesicles for gate-potential modulators in high-performance field-effect transistor biosensors

    Get PDF
    The development of molecular detection that allows rapid responses with high sensitivity and selectivity remains challenging. Herein, we demonstrate the strategy of novel bio-nanotechnology to successfully fabricate high-performance dopamine (DA) biosensor using DA Receptor-containing uniform-particle-shaped Nanovesicles-immobilized Carboxylated poly(3,4-ethylenedioxythiophene) (CPEDOT) NTs (DRNCNs). DA molecules are commonly associated with serious diseases, such as Parkinson's and Alzheimer's diseases. For the first time, nanovesicles containing a human DA receptor D1 (hDRD1) were successfully constructed from HEK-293 cells, stably expressing hDRD1. The nanovesicles containing hDRD1 as gate-potential modulator on the conducting polymer (CP) nanomaterial transistors provided high-performance responses to DA molecule owing to their uniform, monodispersive morphologies and outstanding discrimination ability. Specifically, the DRNCNs were integrated into a liquid-ion gated field-effect transistor (FET) system via immobilization and attachment processes, leading to high sensitivity and excellent selectivity toward DA in liquid state. Unprecedentedly, the minimum detectable level (MDL) from the field-induced DA responses was as low as 10 pM in real- time, which is 10 times more sensitive than that of previously reported CP based-DA biosensors. Moreover, the FET-type DRNCN biosensor had a rapid response time (<1 s) and showed excellent selectivity in human serum

    Glycosylated proteins preserved over millennia: N-glycan analysis of Tyrolean Iceman, Scythian Princess and Warrior.

    Get PDF
    An improved understanding of glycosylation will provide new insights into many biological processes. In the analysis of oligosaccharides from biological samples, a strict regime is typically followed to ensure sample integrity. However, the fate of glycans that have been exposed to environmental conditions over millennia has not yet been investigated. This is also true for understanding the evolution of the glycosylation machinery in humans as well as in any other biological systems. In this study, we examined the glycosylation of tissue samples derived from four mummies which have been naturally preserved: - the 5,300 year old "Iceman called Oetzi", found in the Tyrolean Alps; the 2,400 year old "Scythian warrior" and "Scythian Princess", found in the Altai Mountains; and a 4 year old apartment mummy, found in Vienna/Austria. The number of N-glycans that were identified varied both with the age and the preservation status of the mummies. More glycan structures were discovered in the contemporary sample, as expected, however it is significant that glycan still exists in the ancient tissue samples. This discovery clearly shows that glycans persist for thousands of years, and these samples provide a vital insight into ancient glycosylation, offering us a window into the distant past

    Comprehensive native glycan profiling with isomer separation and quantitation for the discovery of cancer biomarkers

    Get PDF
    Glycosylation is highly sensitive to the biochemical environment and has been implicated in many diseases including cancer. Glycan compositional profiling of human serum with mass spectrometry has already identified potential biomarkers for several types of cancer and diseases; however, composition alone does not fully describe glycan stereo-and regioisomeric diversity. The vast structural heterogeneity of glycans presents a formidable analytical challenge. We have developed a method to identify and quantify isomeric native glycans using nanoflow liquid chromatography (nano-LC)/mass spectrometry. A microfluidic chip packed with graphitized carbon was used to chromatographically separate the glycans. To determine the utility of this method for structure-specific biomarker discovery, we analyzed serum samples from two groups of prostate cancer patients with different prognoses. More than 300 N-glycan species (including isomeric structures) were identified, corresponding to over 100 N-glycan compositions. Statistical tests established significant differences in glycan abundances between patient groups. This method provides comprehensive, selective, and quantitative glycan profiling

    FBXW7-mediated ERK3 degradation regulates the proliferation of lung cancer cells

    Get PDF
    Extracellular signal-regulated kinase 3 (ERK3) is an atypical member of the mitogen-activated protein kinase (MAPK) family, members of which play essential roles in diverse cellular processes during carcinogenesis, including cell proliferation, differentiation, migration, and invasion. Unlike other MAPKs, ERK3 is an unstable protein with a short half-life. Although deubiquitination of ERK3 has been suggested to regulate the activity, its ubiquitination has not been described in the literature. Here, we report that FBXW7 (F-box and WD repeat domain-containing 7) acts as a ubiquitination E3 ligase for ERK3. Mammalian two-hybrid assay and immunoprecipitation results demonstrated that ERK3 is a novel binding partner of FBXW7. Furthermore, complex formation between ERK3 and the S-phase kinase-associated protein 1 (SKP1)-cullin 1-F-box protein (SCF) E3 ligase resulted in the destabilization of ERK3 via a ubiquitination-mediated proteasomal degradation pathway, and FBXW7 depletion restored ERK3 protein levels by inhibiting this ubiquitination. The interaction between ERK3 and FBXW7 was driven by binding between the C34D of ERK3, especially at Thr417 and Thr421, and the WD40 domain of FBXW7. A double mutant of ERK3 (Thr417 and Thr421 to alanine) abrogated FBXW7-mediated ubiquitination. Importantly, ERK3 knockdown inhibited the proliferation of lung cancer cells by regulating the G1/S-phase transition of the cell cycle. These results show that FBXW7-mediated ERK3 destabilization suppresses lung cancer cell proliferation in vitro

    A Study Using a Monte Carlo Method of the Optimal Configuration of a Distribution Network in Terms of Power Loss Sensing

    Get PDF
    Recently there have been many studies of power systems with a focus on “New and Renewable Energy” as part of “New Growth Engine Industry” promoted by the Korean government. “New And Renewable Energy”—especially focused on wind energy, solar energy and fuel cells that will replace conventional fossil fuels—is a part of the Power-IT Sector which is the basis of the SmartGrid. A SmartGrid is a form of highly-efficient intelligent electricity network that allows interactivity (two-way communications) between suppliers and consumers by utilizing information technology in electricity production, transmission, distribution and consumption. The New and Renewable Energy Program has been driven with a goal to develop and spread through intensive studies, by public or private institutions, new and renewable energy which, unlike conventional systems, have been operated through connections with various kinds of distributed power generation systems. Considerable research on smart grids has been pursued in the United States and Europe. In the United States, a variety of research activities on the smart power grid have been conducted within EPRI’s IntelliGrid research program. The European Union (EU), which represents Europe’s Smart Grid policy, has focused on an expansion of distributed generation (decentralized generation) and power trade between countries with improved environmental protection. Thus, there is current emphasis on a need for studies that assesses the economic efficiency of such distributed generation systems. In this paper, based on the cost of distributed power generation capacity, calculations of the best profits obtainable were made by a Monte Carlo simulation. Monte Carlo simulations that rely on repeated random sampling to compute their results take into account the cost of electricity production, daily loads and the cost of sales and generate a result faster than mathematical computations. In addition, we have suggested the optimal design, which considers the distribution loss associated with power distribution systems focus on sensing aspect and distributed power generation
    corecore