35 research outputs found

    Nanosilver-Silica Composite : Prolonged Antibacterial Effects and Bacterial Interaction Mechanisms for Wound Dressings

    Get PDF
    Infected superficial wounds were traditionally controlled by topical antibiotics until the emergence of antibiotic-resistant bacteria. Silver (Ag) is a kernel for alternative antibacterial agents to fight this resistance quandary. The present study demonstrates a method for immobilizing small-sized (similar to 5 nm) silver nanoparticles on silica matrix to form a nanosilver-silica (Ag-SiO2) composite and shows the prolonged antibacterial effects of the composite in vitro. The composite exhibited a rapid initial Ag release after 24 h and a slower leaching after 48 and 72 h and was effective against both methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli (E. coli). Ultraviolet (UV)-irradiation was superior to filter-sterilization in retaining the antibacterial effects of the composite, through the higher remaining Ag concentration. A gauze, impregnated with the Ag-SiO2 composite, showed higher antibacterial effects against MRSA and E. coli than a commercial Ag-containing dressing, indicating a potential for the management and infection control of superficial wounds. Transmission and scanning transmission electron microscope analyses of the composite-treated MRSA revealed an interaction of the released silver ions with the bacterial cytoplasmic constituents, causing ultimately the loss of bacterial membranes. The present results indicate that the Ag-SiO2 composite, with prolonged antibacterial effects, is a promising candidate for wound dressing applications.Peer reviewe

    Solar Cycle Occurrence of Alfvenic Fluctuations and Related Geo-Efficiency

    Get PDF
    We examine solar wind intervals with Alfvénic fluctuations (ALFs) in 1995–2011. The annual number, the total annual duration, and the average length of ALFs vary over the solar cycle, having a maximum in 2003 and a minimum in 2009. ALFs are most frequent in the declining phase of solar cycle, when the number of high‐speed streams at the Earth's vicinity is increased. There is a rapid transition after the maximum of solar cycle 23 from ALFs being mainly embedded in slow solar wind (600 km/s) since 2003. Cross helicity increased by 30% from 2002 to 2003 and maximized typically 4–6 h before solar wind speed maximum. Cross helicity remained elevated for several days for highly Alfvénic non‐ICME streams, but only for a few hours for ICMEs. The number of substorms increased by about 40% from 2002 to 2003, and the annual number of substorms closely follows the annual cross helicity. This further emphasizes the role of Alfvénic fluctuations in modulating substorm activity. The predictability of substorm frequency and size would be greatly improved by monitoring solar wind Alfvénic fluctuations in addition to the mean values of the important solar wind parameters

    The search for chaotic edge localized modes in ASDEX Upgrade

    No full text
    Time intervals between edge localized modes (ELMs) from the ASDEX Upgrade tokamak have been analysed to determine whether the ELM dynamics is chaotic (deterministic) or random (noise dominated). Two different methods have been used to detect unstable periodic orbits or unstable fixed points, which are indicators of chaos, in the ELM time series. It has been found that these time series generally are noise dominated, with the notable exception of five individual discharges in which traces of chaos have been detected
    corecore