3,207 research outputs found

    Langevin Equation for the Rayleigh model with finite-ranged interactions

    Full text link
    Both linear and nonlinear Langevin equations are derived directly from the Liouville equation for an exactly solvable model consisting of a Brownian particle of mass MM interacting with ideal gas molecules of mass mm via a quadratic repulsive potential. Explicit microscopic expressions for all kinetic coefficients appearing in these equations are presented. It is shown that the range of applicability of the Langevin equation, as well as statistical properties of random force, may depend not only on the mass ratio m/Mm/M but also by the parameter Nm/MNm/M, involving the average number NN of molecules in the interaction zone around the particle. For the case of a short-ranged potential, when Nâ‰Ș1N\ll 1, analysis of the Langevin equations yields previously obtained results for a hard-wall potential in which only binary collisions are considered. For the finite-ranged potential, when multiple collisions are important (N≫1N\gg 1), the model describes nontrivial dynamics on time scales that are on the order of the collision time, a regime that is usually beyond the scope of more phenomenological models.Comment: 21 pages, 1 figure. To appear in Phys. Rev.

    The Role of Overexpressed HER2 in Transformation

    Get PDF
    The HER family of receptors has an important role in the network of cell signals controlling cell growth and differentiation. Although the activity of the HER receptor is strictly controlled in normal cells, HER2 receptor overexpression plays a pivotal role in transformation and tumorigenesis. HER2 gene amplification and/or overexpression of the receptor has been detected in subsets of a wide range of human cancers including breast cancer, and is an indicator of poor prognosis. It is proposed that overexpressed HER2 in combination with HER3 causes high activity of cell-signaling networks, thereby resulting in tumor cell proliferation. Thus, the HER2 receptor is an attractive target for new anti-cancer treatments. Mono-clonal antibodies directed against the receptor are the most promising of these, and the humanized anti-HER2 monoclonal antibody trastuzumab (Herceptin) has shown significant clinical efficacy in clinical trials. The anti-tumor mechanisms of anti-HER2 monoclonal antibodies are not completely understood. However, some tumor types are not sensitive to trastuzumab, suggesting that the response of a tumor to trastuzumab may not only be dependent on overexpressed HER2, but may also be influenced by other members of the HER receptor family expressed in the tumor cel

    Modulation of p27/Cdk2 complex formation through 4D5-mediated inhibition of HER2 receptor signaling

    Get PDF
    The molecular mechanisms mediating the anti-proliferative effects of the murine anti-HER2 monoclonal antibody (4D5) were investigated in HER2-overexpressing human carcinoma cell lines. Treatment with 4D5 resulted in a dramatic accumulation of BT-474 breast carcinoma cells in Gl; concomitant with reduced expression of proteins involved in sequestration of the cyclin E/Cdk2 inhibitor protein p27, increased association of p27 with Cdk2 complexes and Cdk2 inactivation. No equivalent effects were observed in BT-474 cells treated with a control, non-inhibitory HER2 monoclonal antibody (FRP5) or in a HER2-overexpressing cell line insensitive to 4D5 treatment (MKN7 gastric carcinoma cells), confirming the relationship between these molecular changes and 4D5-mediated inhibition of proliferation. Increased p27 expression was also observed in 4D5-treated BT-474 cells; however an antisense approach demonstrated that this increase was not required for Cdk2 inactivation or establishment of the Gl block. These data suggest that 4D5 interferes with HER2 receptor signaling, resulting in downregulation of proteins involved in p27 sequestration. This causes release of p27, allowing binding and inhibition of cyclin E/Cdk2 complexes and inhibition of Gl/S progression. This model was confirmed using a second 4D5-sensitive, HER2-overexpressing breast tumor line (SKBR3), and suggests that the dependency of a given tumor cell on elevated HER2-receptor signaling for the maintenance of p27 sequestration proteins may determine the clinical response to treatment with the humanized anti-HER2 monoclonal antibody HerceptinÂź (trastuzumab

    Modeling the Low State Spectrum of the X-Ray Nova XTE J1118+480

    Get PDF
    Based on recent multiwavelength observations of the new X-ray nova XTE J1118+480, we can place strong constraints on the geometry of the accretion flow in which a low/hard state spectrum, characteristic of an accreting black hole binary, is produced. We argue that the absence of any soft blackbody-like component in the X-ray band implies the existence of an extended hot optically-thin region, with the optically-thick cool disk truncated at some radius R_{tr} > 55 R_{Schw}. We show that such a model can indeed reproduce the main features of the observed spectrum: the relatively high optical to X-ray ratio, the sharp downturn in the far UV band and the hard X-ray spectrum. The absence of the disk blackbody component also underscores the requirement that the seed photons for thermal Comptonization be produced locally in the hot flow, e.g. via synchrotron radiation. We attribute the observed spectral break at 2 keV to absorption in a warm, partially ionized gas.Comment: 6 pages, including 1 figure; LaTeX (emulateapj5.sty), to appear in Ap

    Distribution and abundance of fish and crayfish in a Waikato stream in relation to basin area

    Get PDF
    The aim of this study was to relate the longitudinal distribution of fish and crayfish to increasing basin area and physical site characteristics in the Mangaotama Stream, Waikato region, North Island, New Zealand. Fish and crayfish were captured with two-pass removal electroshocking at 11 sites located in hill-country with pasture, native forest, and mixed land uses within the 21.6 km2 basin. Number of fish species and lineal biomass of fish increased with increasing basin area, but barriers to upstream fish migration also influenced fish distribution; only climbing and non-migratory species were present above a series of small waterfalls. Fish biomass increased in direct proportion to stream width, suggesting that fish used much of the available channel, and stream width was closely related to basin area. Conversely, the abundance of crayfish was related to the amount of edge habitat, and therefore crayfish did not increase in abundance as basin area increased. Densities of all fish species combined ranged from 17 to 459 fish 100 m-2, and biomass ranged from 14 to 206 g m-2. Eels dominated the fish assemblages, comprising 85-100% of the total biomass; longfinned eels the majority of the biomass at most sites. Despite the open access of the lower sites to introduced brown trout, native species dominated all the fish communities sampled

    The evolutionary status of the semiregular variable QYSge

    Full text link
    Repeated spectroscopic observations made with the 6m telescope of yielded new data on the radial-velocity variability of the anomalous yellow supergiant QYSge. The strongest and most peculiar feature in its spectrum is the complex profile of NaI D lines, which contains a narrow and a very wide emission components. The wide emission component can be seen to extend from -170 to +120 km/s, and at its central part it is cut by an absorption feature, which, in turn, is split into two subcomponents by a narrow (16km/s at r=2.5) emission peak. An analysis of all the Vr values leads us to adopt for the star a systemic velocity of Vr=-21.1 km/s, which corresponds to the position of the narrow emission component of NaI. The locations of emission-line features of NaI D lines are invariable, which point to their formation in regions that are external to the supergiant's photosphere. Differential line shifts of about 10km/s are revealed. The absorption lines in the spectrum of QYSge have a substantial width of FWHM~45 km/s. The method of model atmospheres is used to determine the following parameters: Teff=6250K, lg g=2.0, and microturbulence Vt=4.5km/s. The metallicity of the star is found to be somewhat higher than the solar one with an average overabundance of iron-peak elements of [Met/H]=+0.20. The star is found to be slightly overabundant in carbon and nitrogen, [C/Fe]=+0.25, [N/Fe]=+0.27. The alpha-process elements Mg, Si, and Ca are slightly overabundant [alpha/H]=+0.12. The strong sodium excess, [Na/Fe]=+0.75, is likely to be due to the dredge-up of the matter processed in the NeNa cycle. Heavy elements of the s-process are underabundant relative to the Sun. On the whole, the observed properties of QYSge do not give grounds for including this star into the group of RCrB or RVTau-type type objects.Comment: 29 pages, 8 figures, 4 tables; accepted by Astrophys. Bulleti

    Measuring The Evolutionary Rate Of Cooling Of ZZ Ceti

    Get PDF
    We have finally measured the evolutionary rate of cooling of the pulsating hydrogen atmosphere (DA) white dwarf ZZ Ceti (Ross 548), as reflected by the drift rate of the 213.13260694 s period. Using 41 yr of time-series photometry from 1970 November to 2012 January, we determine the rate of change of this period with time to be dP/dt = (5.2 +/- 1.4) x 10(-15) s s(-1) employing the O - C method and (5.45 +/- 0.79) x 10(-15) s s(-1) using a direct nonlinear least squares fit to the entire lightcurve. We adopt the dP/dt obtained from the nonlinear least squares program as our final determination, but augment the corresponding uncertainty to a more realistic value, ultimately arriving at the measurement of dP/dt = (5.5 +/- 1.0) x 10(-15) s s(-1). After correcting for proper motion, the evolutionary rate of cooling of ZZ Ceti is computed to be (3.3 +/- 1.1) x 10(-15) s s(-1). This value is consistent within uncertainties with the measurement of (4.19 +/- 0.73) x 10(-15) s s(-1) for another similar pulsating DA white dwarf, G 117-B15A. Measuring the cooling rate of ZZ Ceti helps us refine our stellar structure and evolutionary models, as cooling depends mainly on the core composition and stellar mass. Calibrating white dwarf cooling curves with this measurement will reduce the theoretical uncertainties involved in white dwarf cosmochronometry. Should the 213.13 s period be trapped in the hydrogen envelope, then our determination of its drift rate compared to the expected evolutionary rate suggests an additional source of stellar cooling. Attributing the excess cooling to the emission of axions imposes a constraint on the mass of the hypothetical axion particle.NSF AST-1008734, AST-0909107Norman Hackerman Advanced Research Program 003658-0252-2009Astronom

    Measuring The Evolutionary Rate Of Cooling Of ZZ Ceti

    Get PDF
    We have finally measured the evolutionary rate of cooling of the pulsating hydrogen atmosphere (DA) white dwarf ZZ Ceti (Ross 548), as reflected by the drift rate of the 213.13260694 s period. Using 41 yr of time-series photometry from 1970 November to 2012 January, we determine the rate of change of this period with time to be dP/dt = (5.2 +/- 1.4) x 10(-15) s s(-1) employing the O - C method and (5.45 +/- 0.79) x 10(-15) s s(-1) using a direct nonlinear least squares fit to the entire lightcurve. We adopt the dP/dt obtained from the nonlinear least squares program as our final determination, but augment the corresponding uncertainty to a more realistic value, ultimately arriving at the measurement of dP/dt = (5.5 +/- 1.0) x 10(-15) s s(-1). After correcting for proper motion, the evolutionary rate of cooling of ZZ Ceti is computed to be (3.3 +/- 1.1) x 10(-15) s s(-1). This value is consistent within uncertainties with the measurement of (4.19 +/- 0.73) x 10(-15) s s(-1) for another similar pulsating DA white dwarf, G 117-B15A. Measuring the cooling rate of ZZ Ceti helps us refine our stellar structure and evolutionary models, as cooling depends mainly on the core composition and stellar mass. Calibrating white dwarf cooling curves with this measurement will reduce the theoretical uncertainties involved in white dwarf cosmochronometry. Should the 213.13 s period be trapped in the hydrogen envelope, then our determination of its drift rate compared to the expected evolutionary rate suggests an additional source of stellar cooling. Attributing the excess cooling to the emission of axions imposes a constraint on the mass of the hypothetical axion particle.NSF AST-1008734, AST-0909107Norman Hackerman Advanced Research Program 003658-0252-2009Astronom
    • 

    corecore