359 research outputs found
An easy to control all-metal in-line-series ohmic RF MEMS switch
Copyright @ 2010 Springer-VerlagThe analysis, design and simulation of a novel easy to control all-metal in-line-series ohmic RF MEMS switch is presented, for applications where the operating frequency ranges from DC to 4 GHz. The proposed switch, due to its unique shape and size, assures high isolation and great linearity fulfilling the necessary requirements as concerns loss, power handling and power consumption. Simplicity has been set as the key success factor implying robustness and high fabrication yield. On the other hand, the specially designed cantilever-shape (hammerhead) allows distributed actuation force ensuring high controllability as well as reliability making the presented RF MEMS switch one of its kind
Automatic mental processes, automatic actions and behaviours in game transfer phenomena: an empirical self-report study using online forum data
Previous studies have demonstrated that the playing of videogames can have both intended and unintended effects. The purpose of this study was to investigate the influence of videogames on players’ mental processes and behaviours in day-to-day settings. A total of 1,023 self-reports from 762 gamers collected from online videogame forums were classified, quantified, described and explained. The data include automatic thoughts, sensations and impulses, automatic mental replays of the game in real life, and voluntary/involuntary behaviours with videogame content. Many gamers reported that they had responded – at least sometimes – to real life stimuli as if they were still playing videogames. This included overreactions, avoidances, and involuntary movements of limbs. These experiences lasted relatively short periods of time but in a minority of players were recurrent. The gamers' experiences appeared to be enhanced by virtual embodiment, repetitive manipulation of game controls, and their gaming habits. However, similar phenomena may also occur when doing other non-gaming activities. The implications of these game transfer experiences are discussed
Genetic association of CDC2 with cerebrospinal fluid tau in Alzheimer's disease
We have recently reported that a polymorphism in the cell division cycle (CDC2) gene, designated Ex6 + 7I/D, is associated with Alzheimer's disease (AD). The CDC2 gene is located on chromosome 10q21.1 close to the marker D10S1225 linked to AD. Active cdc2 accumulates in neurons containing neurofibrillary tangles (NFT), a process that can precede the formation of NFT. Therefore, CDC2 is a promising candidate susceptibility gene for AD. We investigated the possible effects of the CDC2 polymorphism on cerebrospinal fluid (CSF) biomarkers in AD patients. CDC2 genotypes were evaluated in relation to CSF protein levels of total tau, phospho-tau and beta-amyloid (1-42) in AD patients and control individuals, and in relation to the amount of senile plaques and NFT in the frontal cortex and in the hippocampus in patients with autopsy-proven AD and controls. The CDC2 Ex6 + 7I allele was associated with a gene dose-dependent increase of CSF total tau levels (F-2,F- 626 = 7.0, p = 0.001) and the homozygous CDC2Ex6 +7II genotype was significantly more frequent among AD patients compared to controls (p = 0.006, OR = 1.57, 95% CI 1.13-2.17). Our results provide further evidence for an involvement of cdc2 in the pathogenesis of AD. Copyright (C) 2005 S. Karger AG, Basel
A computational study on altered theta-gamma coupling during learning and phase coding
There is considerable interest in the role of coupling between theta and gamma oscillations in the brain in the context of learning and memory. Here we have used a neural network model which is capable of producing coupling of theta phase to gamma amplitude firstly to explore its ability to reproduce reported learning changes and secondly to memory-span and phase coding effects. The spiking neural network incorporates two kinetically different GABAA receptor-mediated currents to generate both theta and gamma rhythms and we have found that by selective alteration of both NMDA receptors and GABAA,slow receptors it can reproduce learning-related changes in the strength of coupling between theta and gamma either with or without coincident changes in theta amplitude. When the model was used to explore the relationship between theta and gamma oscillations, working memory capacity and phase coding it showed that the potential storage capacity of short term memories, in terms of nested gamma-subcycles, coincides with the maximal theta power. Increasing theta power is also related to the precision of theta phase which functions as a potential timing clock for neuronal firing in the cortex or hippocampus
A Pair of Dopamine Neurons Target the D1-Like Dopamine Receptor DopR in the Central Complex to Promote Ethanol-Stimulated Locomotion in Drosophila
Dopamine is a mediator of the stimulant properties of drugs of abuse, including ethanol, in mammals and in the fruit fly Drosophila. The neural substrates for the stimulant actions of ethanol in flies are not known. We show that a subset of dopamine neurons and their targets, through the action of the D1-like dopamine receptor DopR, promote locomotor activation in response to acute ethanol exposure. A bilateral pair of dopaminergic neurons in the fly brain mediates the enhanced locomotor activity induced by ethanol exposure, and promotes locomotion when directly activated. These neurons project to the central complex ellipsoid body, a structure implicated in regulating motor behaviors. Ellipsoid body neurons are required for ethanol-induced locomotor activity and they express DopR. Elimination of DopR blunts the locomotor activating effects of ethanol, and this behavior can be restored by selective expression of DopR in the ellipsoid body. These data tie the activity of defined dopamine neurons to D1-like DopR-expressing neurons to form a neural circuit that governs acute responding to ethanol
Formation of Toxic Oligomeric α-Synuclein Species in Living Cells
Background: Misfolding, oligomerization, and fibrillization of α-synuclein are thought to be central events in the onset and progression of Parkinson's disease (PD) and related disorders. Although fibrillar α-synuclein is a major component of Lewy bodies (LBs), recent data implicate prefibrillar, oligomeric intermediates as the toxic species. However, to date, oligomeric species have not been identified in living cells. Methodology/Principal Findings: Here we used bimolecular fluorescence complementation (BiFC) to directly visualize α-synuclein oligomerization in living cells, allowing us to study the initial events leading to α-synuclein oligomerization, the precursor to aggregate formation. This novel assay provides us with a tool with which to investigate how manipulations affecting α-synuclein aggregation affect the process over time. Stabilization of α-synuclein oligomers via BiFC results in increased cytotoxicity, which can be rescued by Hsp70 in a process that reduces the formation of α-synuclein oligomers. Introduction of PD-associated mutations in α-synuclein did not affect oligomer formation but the biochemical properties of the mutant α-synuclein oligomers differ from those of wild type α-synuclein. Conclusions/Significance: This novel application of the BiFC assay to the study of the molecular basis of neurodegenerative disorders enabled the direct visualization of α-synuclein oligomeric species in living cells and its modulation by Hsp70, constituting a novel important tool in the search for therapeutics for synucleinopathies
Phylogeny of Echinoderm Hemoglobins
Recent genomic information has revealed that neuroglobin and cytoglobin are the two principal lineages of vertebrate hemoglobins, with the latter encompassing the familiar myoglobin and α-globin/β-globin tetramer hemoglobin, and several minor groups. In contrast, very little is known about hemoglobins in echinoderms, a phylum of exclusively marine organisms closely related to vertebrates, beyond the presence of coelomic hemoglobins in sea cucumbers and brittle stars. We identified about 50 hemoglobins in sea urchin, starfish and sea cucumber genomes and transcriptomes, and used Bayesian inference to carry out a molecular phylogenetic analysis of their relationship to vertebrate sequences, specifically, to assess the hypothesis that the neuroglobin and cytoglobin lineages are also present in echinoderms.The genome of the sea urchin Strongylocentrotus purpuratus encodes several hemoglobins, including a unique chimeric 14-domain globin, 2 androglobin isoforms and a unique single androglobin domain protein. Other strongylocentrotid genomes appear to have similar repertoires of globin genes. We carried out molecular phylogenetic analyses of 52 hemoglobins identified in sea urchin, brittle star and sea cucumber genomes and transcriptomes, using different multiple sequence alignment methods coupled with Bayesian and maximum likelihood approaches. The results demonstrate that there are two major globin lineages in echinoderms, which are related to the vertebrate neuroglobin and cytoglobin lineages. Furthermore, the brittle star and sea cucumber coelomic hemoglobins appear to have evolved independently from the cytoglobin lineage, similar to the evolution of erythroid oxygen binding globins in cyclostomes and vertebrates.The presence of echinoderm globins related to the vertebrate neuroglobin and cytoglobin lineages suggests that the split between neuroglobins and cytoglobins occurred in the deuterostome ancestor shared by echinoderms and vertebrates
High locomotor reactivity to novelty is associated with an increased propensity to choose saccharin over cocaine: new insights into the vulnerability to addiction.
Drug addiction is associated with a relative devaluation of natural or socially-valued reinforcers that are unable to divert addicts from seeking and consuming the drug. Before protracted drug exposure, most rats prefer natural rewards, such as saccharin, over cocaine. However, a subpopulation of animals prefer cocaine over natural rewards and are thought to be vulnerable to addiction. Specific behavioral traits have been associated with different dimensions of drug addiction. For example, anxiety predicts loss of control over drug intake whereas sensation seeking and sign-tracking are markers of a greater sensitivity to the rewarding properties of the drug. However, how these behavioral traits predict the disinterest for natural reinforcers remains unknown. In a population of rats, we identified sensation seekers (HR) on the basis of elevated novelty-induced locomotor reactivity, high anxious rats (HA) based on the propensity to avoid open arms in an elevated-plus maze and sign-trackers (ST) that are prone to approach, and interaction with, reward-associated stimuli. Rats were then tested on their preference for saccharin over cocaine in a discrete-trial choice procedure. We show that HR rats display a greater preference for saccharin over cocaine compared with ST and HA whereas the motivation for the drug was comparable between the three groups. The present data suggest that high locomotor reactivity to novelty, or sensation seeking, by predisposing to an increased choice toward non-drug rewards at early stages of drug use history, may prevent the establishment of chronic cocaine use.This work was funded by an INSERM AVENIR and Agence Nationale de la Recherche (ANR) ANR12 SAMA00201 grant to DB, the région Poitou-Charentes, an AXA research fund fellowship to ABR, and a Ministère de la Recherche et de la Technologie grant to NV. AM was supported by the Behavioural and Clinical Neuroscience Institute of Cambridge.This is the accepted manuscript of a paper published in Neuropsychopharmacology (2015) 40, 577–589; doi:10.1038/npp.2014.204; published online 17 September 2014
Artesunate induces necrotic cell death in schwannoma cells
Established as a potent anti-malaria medicine, artemisinin-based drugs have been suggested to have anti-tumour activity in some cancers. Although the mechanism is poorly understood, it has been suggested that artemisinin induces apoptotic cell death. Here, we show that the artemisinin analogue artesunate (ART) effectively induces cell death in RT4 schwannoma cells and human primary schwannoma cells. Interestingly, our data indicate for first time that the cell death induced by ART is largely dependent on necroptosis. ART appears to inhibit autophagy, which may also contribute to the cell death. Our data in human schwannoma cells show that ART can be combined with the autophagy inhibitor chloroquine (CQ) to potentiate the cell death. Thus, this study suggests that artemisinin-based drugs may be used in certain tumours where cells are necroptosis competent, and the drugs may act in synergy with apoptosis inducers or autophagy inhibitors to enhance their anti-tumour activity
Electrophysiological correlates of associative learning in smokers: a higher-order conditioning experiment
Background: Classical conditioning has been suggested to play an important role in the development, maintenance, and relapse of tobacco smoking. Several studies have shown that initially neutral stimuli that are directly paired with smoking are able to elicit conditioned responses. However, there have been few human studies that demonstrate the contribution of higher-order conditioning to smoking addiction, although it is assumed that higher-order conditioning predominates learning in the outside world. In the present study a higher-order conditioning task was designed in which brain responses of smokers and non-smokers were conditioned by pairing smoking-related and neutral stimuli (CS1smokeand CS1neutral) with two geometrical figures (CS2smokeand CS2neutral). ERPs were recorded to all CSs.Results: Data showed that the geometrical figure that was paired with smoking stimuli elicited significantly larger P2 and P3 waves than the geometrical figure that was paired with neutral stimuli. During the first half of the experiment this effect was only present in smokers whereas non-smokers displayed no significant differences between both stimuli, indicating that neutral cues paired with motivationally relevant smoking-related stimuli gain more motivational significance even though they were never paired directly with smoking. These conclusions are underscored by self-reported evidence of enhanced second-order conditioning in smokers.Conclusions: It can be concluded that smokers show associative learning for higher-order smoking-related stimuli. The present study directly shows the contribution of higher-order conditioning to smoking addiction and is the first to reveal its electrophysiological correlates. Although results are preliminary, they may help in understanding the etiology of smoking addiction and its persistence
- …