23 research outputs found

    Anticholinesterase and Antioxidant Activities of Spilanthes filicaulis Whole Plant Extracts for the Management of Alzheimer’s Disease

    Get PDF
    Background: Spilanthes filicaulis is a tropical herb implicated as a memory enhancer in ethnomedicine. Objective: The study investigated acetyl/butyryl cholinesterase inhibitory and antioxidant activities of different extracts of S. filicaulis whole plant and correlated them to its phytochemical constituents. Methods: The powdered whole plant was successively extracted with n-hexane, ethyl acetate and methanol. Acetyl cholinesterase (AChE) and Butyryl cholinesterase (BuChE) inhibitory activity were evaluated by Ellman colorimetry assay. Antioxidant activity was tested using 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, ferric reducing power and nitric oxide scavenging assays. Total phenolic, flavonoid and tannin were estimated using standard methods. Correlation was determined using Quest Graph™ Regression Calculator. Results: Various extracts exhibited concentration-dependent AChE and BuChE inhibitory activity with ethyl acetate extract being the highest with IC50 of 0.77 μg/mL and 0.92 μg/mL for AChE and BuChE respectively. The ethyl acetate extract also showed the highest reducing power when compared with the other extracts. The methanol extract had slightly higher phenolic and flavonoid content and showed the highest DPPH radical scavenging effect. DPPH scavenging, AChE and BuChE inhibition had high correlation with the total flavonoid content with R2 values of 1.00, 0.800 and 0.992 respectively while nitric oxide scavenging had high correlation with phenolics and tannins with R2 = 0.942 and 0.806 respectively. Conclusion: These results show that the extracts of the whole plant of S. filicaulis possess significant AChE/BuChE inhibitory and antioxidant properties, mostly due to its flavonoid content, suggesting the possible use of the plant in neurodegenerative diseases such as AD

    Emerging Trends in the Etiology, Prevention, and Treatment of Gastrointestinal Anastomotic Leakage

    No full text
    Anastomotic leaks represent one of the most alarming complications following any gastrointestinal anastomosis due to the substantial effects on post-operative morbidity and mortality of the patient with long-lasting effects on the functional and oncologic outcomes. There is a lack of consensus related to the definition of an anastomotic leak, with a variety of options for prevention and management. A number of patient-related and technical risk factors have been found to be associated with the development of an anastomotic leak and have inspired the development of various preventative measures and technologies. The International Multispecialty Anastomotic Leak Global Improvement Exchange group was convened to establish a consensus on the definition of an anastomotic leak as well as to discuss the various diagnostic, preventative, and management measures currently available. © 2016, The Society for Surgery of the Alimentary Tract

    Persistent gene expression changes in ventral tegmental area of adolescent but not adult rats in response to chronic nicotine

    No full text
    Because adolescent brains are undergoing extensive developmental changes, they may be uniquely sensitive to effects of addictive drugs like nicotine. We exposed adolescent and adult rats to nicotine infusion for two weeks, and then used whole genome microarray analysis to determine effects on gene expression in the ventral tegmental area. We examined brains immediately after two weeks of nicotine or saline, and also four weeks after termination of nicotine exposure. After identifying genes with a significant age X treatment interaction, we employed template matching to find specific patterns of expression across age and treatment. Of those genes that were transiently regulated (up- or down-regulated immediately following the end of nicotine treatment, but back to saline baseline 30 days later), two-thirds were specific to adult animals, while only 30% were specific to adolescents and 4% were shared across the two ages. In contrast, significant genes that were persistently regulated (altered following nicotine treatment and still altered 30 days later) were more likely (59%) to be adolescent, with only 32% in adults and 8% shared. The greatest number of significant genes was late-regulated (no change immediately after nicotine, but regulated 30 days later). Again, most were in adolescents (54%), compared to adults (10%) or shared (36%). Pathway analysis revealed that adolescent-specific genes were over-represented in several biological functions and canonical pathways, including nervous system development and function and long-term potentiation. Furthermore, adolescent-specific genes formed extensive interaction networks, unlike those specific for adults or shared. This age-specific expression pattern may relate to the heightened vulnerability of adolescents to the effects of addictive drugs. In particular, the propensity of adolescents to show persistent alterations in gene expression corresponds to the persistence of drug dependence among smokers who began their habit as adolescents. These findings support a model whereby adolescent brains are uniquely vulnerable to long-term changes in gene expression in the brain’s reward pathway caused by early exposure to nicotine
    corecore