36 research outputs found

    Post-intervention Status in Patients With Refractory Myasthenia Gravis Treated With Eculizumab During REGAIN and Its Open-Label Extension

    Get PDF
    OBJECTIVE: To evaluate whether eculizumab helps patients with anti-acetylcholine receptor-positive (AChR+) refractory generalized myasthenia gravis (gMG) achieve the Myasthenia Gravis Foundation of America (MGFA) post-intervention status of minimal manifestations (MM), we assessed patients' status throughout REGAIN (Safety and Efficacy of Eculizumab in AChR+ Refractory Generalized Myasthenia Gravis) and its open-label extension. METHODS: Patients who completed the REGAIN randomized controlled trial and continued into the open-label extension were included in this tertiary endpoint analysis. Patients were assessed for the MGFA post-intervention status of improved, unchanged, worse, MM, and pharmacologic remission at defined time points during REGAIN and through week 130 of the open-label study. RESULTS: A total of 117 patients completed REGAIN and continued into the open-label study (eculizumab/eculizumab: 56; placebo/eculizumab: 61). At week 26 of REGAIN, more eculizumab-treated patients than placebo-treated patients achieved a status of improved (60.7% vs 41.7%) or MM (25.0% vs 13.3%; common OR: 2.3; 95% CI: 1.1-4.5). After 130 weeks of eculizumab treatment, 88.0% of patients achieved improved status and 57.3% of patients achieved MM status. The safety profile of eculizumab was consistent with its known profile and no new safety signals were detected. CONCLUSION: Eculizumab led to rapid and sustained achievement of MM in patients with AChR+ refractory gMG. These findings support the use of eculizumab in this previously difficult-to-treat patient population. CLINICALTRIALSGOV IDENTIFIER: REGAIN, NCT01997229; REGAIN open-label extension, NCT02301624. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that, after 26 weeks of eculizumab treatment, 25.0% of adults with AChR+ refractory gMG achieved MM, compared with 13.3% who received placebo

    Minimal Symptom Expression' in Patients With Acetylcholine Receptor Antibody-Positive Refractory Generalized Myasthenia Gravis Treated With Eculizumab

    Get PDF
    The efficacy and tolerability of eculizumab were assessed in REGAIN, a 26-week, phase 3, randomized, double-blind, placebo-controlled study in anti-acetylcholine receptor antibody-positive (AChR+) refractory generalized myasthenia gravis (gMG), and its open-label extension

    Colloidal Assembly in Leidenfrost Drops for Noniridescent Structural Color Pigments

    No full text
    Noniridescent structural color pigments have great potential as alternatives to conventional chemical color pigments in many coloration applications due to their nonbleaching and color-tunable properties. In this work, we report a novel method to create photonic microgranules composed of glassy packing of silica particles and small fraction of carbon black nanoparticles, which show pronounced structural colors with low angle-dependency. To prepare isotropic random packing in each microgranule, a Leidenfrost drop, which is a drop levitated by its own vapor on a hot surface, is employed as a template for fast consolidation of silica particles. The drop randomly migrates over the hot surface and rapidly shrinks, while maintaining its spherical shape, thereby consolidating silica particles to granular structures. Carbon black nanoparticles incorporated in the microgranules suppress incoherent multiple scattering, thereby providing improved color contrast. Therefore, photonic microgranules in a full visible range can be prepared by adjusting the size of silica particles with insignificant whitening

    Colloidal Assembly in Leidenfrost Drops for Noniridescent Structural Color Pigments

    No full text
    Noniridescent structural color pigments have great potential as alternatives to conventional chemical color pigments in many coloration applications due to their nonbleaching and color-tunable properties. In this work, we report a novel method to create photonic microgranules composed of glassy packing of silica particles and small fraction of carbon black nanoparticles, which show pronounced structural colors with low angle-dependency. To prepare isotropic random packing in each microgranule, a Leidenfrost drop, which is a drop levitated by its own vapor on a hot surface, is employed as a template for fast consolidation of silica particles. The drop randomly migrates over the hot surface and rapidly shrinks, while maintaining its spherical shape, thereby consolidating silica particles to granular structures. Carbon black nanoparticles incorporated in the microgranules suppress incoherent multiple scattering, thereby providing improved color contrast. Therefore, photonic microgranules in a full visible range can be prepared by adjusting the size of silica particles with insignificant whitening

    Optogenetic STING clustering system through nanobody-fused photoreceptor for innate immune regulation

    No full text
    Stimulator of interferon gene (STING) serves as a key mediator for regulating innate immune response. Despite the dynamic process of STING activation, the role of STING clustering in the STING-mediated immune response remains unclear due to the lack of a suitable tool. We developed an innovative optogenetic STING clustering system, OptoSTING, that employs a nanobody-fused photoreceptor-driven technique to achieve light-responsive STING clustering. By optimizing the protein configuration, we identified an optimal OptoSTING system that induced efficient, robust, and reversible clustering of STING upon blue-light illumination. We confirmed that light-induced STING clustering required ER exit to trigger the stimulation of type I interferon response because only cytosolic fragment of OptoSTING (cyt-OptoSTING) enabled to initiate immune response, not full-length OptoSTING. The precise and temporally controlled clustering by cyt-OptoSTING revealed that STING clustering facilitated the STING signaling pathway through puncta formation of IRF3 as downstream effector protein.11Nscopu

    Durable Plasmonic Cap Arrays on Flexible Substrate with Real-Time Optical Tunability for High-Fidelity SERS Devices

    No full text
    Active tunable plasmonic cap arrays were fabricated on a flexible stretchable substrate using a combination of colloidal lithography, lift-up soft lithography, and subsequent electrostatic assembly of gold nanoparticles. The arrangement of the plasmonic caps could be tuned under external strain to deform the substrate in reversible. Real-time variation in the arrangement could be used to tune the optical properties and the electromagnetic field enhancement, thereby a proving a promising mechanism for optimizing the SERS sensitivity

    Nickel-nitride-coated nickel foam as a counter electrode for dye-sensitized solar cells

    No full text
    This study employs for the first time surface-nitrided Ni foam as a counter-electrode free of Pt and transparent conducting oxides (TCOs) to realize a cost-effective counter electrode for dye-sensitized solar cells (DSSCs). This electrode simultaneously features high catalytic activity for triiodide reduction and high conductivity in a single layer. The nitrided Ni foam is synthesized by nitridation treatment of open-cell Ni foam in an ammonia atmosphere. This electrode presents high catalytic activity on the nitrided surface and easy electron transport ability in the three-dimensional, interconnected metallic structure. This study provides a preliminary design concept for utilizing the nitrided Ni foam as a promising cost-effective counter electrode that does not require expensive Pt and TCO.118191sciescopu

    Free-standing two-dimensional ferro-ionic memristor

    No full text
    Abstract Two-dimensional (2D) ferroelectric materials have emerged as significant platforms for multi-functional three-dimensional (3D) integrated electronic devices. Among 2D ferroelectric materials, ferro-ionic CuInP2S6 has the potential to achieve the versatile advances in neuromorphic computing systems due to its phase tunability and ferro-ionic characteristics. As CuInP2S6 exhibits a ferroelectric phase with insulating properties at room temperature, the external temperature and electrical field should be required to activate the ferro-ionic conduction. Nevertheless, such external conditions inevitably facilitate stochastic ionic conduction, which completely limits the practical applications of 2D ferro-ionic materials. Herein, free-standing 2D ferroelectric heterostructure is mechanically manipulated for nano-confined conductive filaments growth in free-standing 2D ferro-ionic memristor. The ultra-high mechanical bending is selectively facilitated at the free-standing area to spatially activate the ferro-ionic conduction, which allows the deterministic local positioning of Cu+ ion transport. According to the local flexoelectric engineering, 5.76Ă—102-fold increased maximum current is observed within vertical shear strain 720 nN, which is theoretically supported by the 3D flexoelectric simulation. In conclusion, we envision that our universal free-standing platform can provide the extendable geometric solution for ultra-efficient self-powered system and reliable neuromorphic device
    corecore