1,050 research outputs found
Early postictal electroencephalography and correlation with clinical findings in children with febrile seizures
PurposeElectroencephalography (EEG) is frequently ordered for patients with febrile seizures despite its unclear diagnostic value. We evaluated the prevalence of abnormal EEGs, the association between clinical findings and abnormal EEGs, and the predictive value of EEG for the recurrence of febrile seizures.MethodsData were collected on 230 children who were treated for febrile seizures at Kyung Hee University Medical Center from 2005 to 2009. EEGs were recorded after 1-2 days of hospitalization when children became afebrile. EEG patterns were categorized as normal, epileptiform, or nonspecific relative to abnormalities. The patients' medical records were reviewed, and telephone interviews with the families of the children were conducted to inquire about seizure recurrence. The relationships between clinical variables, including seizure recurrence, and EEG abnormalities were evaluated.ResultsOf the 131 children included, 103 had simple and 28 had complex febrile seizures. EEG abnormalities were found in 41 children (31%). EEG abnormalities were more common in children with complex than simple febrile seizures (43% vs. 28%), but the difference was not statistically significant. Logistical regression analysis showed that having multiple seizures in a 24-hour period was significantly predictive of abnormal EEG (odds ratio, 2.98; 95% confidence interval, 1.0 to 88; P=0.048). The frequency of recurrence did not differ significantly in the normal (31%) and abnormal (23%) EEG groups.ConclusionMultiple seizures within 24 hours were predictive of abnormal EEG in children with febrile seizures. Abnormal EEG was not predictive of febrile seizure recurrence
Renal transplantation in a patient with Bartter syndrome and glomerulosclerosis
Bartter syndrome (BS) is a clinically and genetically heterogeneous inherited renal tube disorder characterized by renal salt wasting, hypokalemic metabolic alkalosis and normotensive hyperreninemic hyperaldosteronism. There have been several case reports of BS complicated by focal segmental glomerulosclerosis (FSGS). Here, we have reported the case of a BS patient who developed FSGS and subsequent end-stage renal disease (ESRD) and provided a brief literature review. The patient presented with classic BS at 3 months of age and developed proteinuria at 7 years. Renal biopsy performed at 11 years of age revealed a FSGS perihilar variant. Hemodialysis was initiated at 11 years of age, and kidney transplantation was performed at 16 years of age. The post-transplantation course has been uneventful for more than 3 years with complete disappearance of BS without the recurrence of FSGS. Genetic study revealed a homozygous p.Trp(TGG)610Stop(TGA) mutation in the CLCNKB gene. In summary, BS may be complicated by secondary FSGS due to the adaptive response to chronic salt-losing nephropathy, and FSGS may progress to ESRD in some patients. Renal transplantation in patients with BS and ESRD results in complete remission of BS
Homeobox gene Dlx-2 is implicated in metabolic stress-induced necrosis
<p>Abstract</p> <p>Background</p> <p>In contrast to tumor-suppressive apoptosis and autophagic cell death, necrosis promotes tumor progression by releasing the pro-inflammatory and tumor-promoting cytokine high mobility group box 1 (HMGB1), and its presence in tumor patients is associated with poor prognosis. Thus, necrosis has important clinical implications in tumor development; however, its molecular mechanism remains poorly understood.</p> <p>Results</p> <p>In the present study, we show that Distal-less 2 (Dlx-2), a homeobox gene of the Dlx family that is involved in embryonic development, is induced in cancer cell lines dependently of reactive oxygen species (ROS) in response to glucose deprivation (GD), one of the metabolic stresses occurring in solid tumors. Increased Dlx-2 expression was also detected in the inner regions, which experience metabolic stress, of human tumors and of a multicellular tumor spheroid, an <it>in vitro </it>model of solid tumors. Dlx-2 short hairpin RNA (shRNA) inhibited metabolic stress-induced increase in propidium iodide-positive cell population and HMGB1 and lactate dehydrogenase (LDH) release, indicating the important role(s) of Dlx-2 in metabolic stress-induced necrosis. Dlx-2 shRNA appeared to exert its anti-necrotic effects by preventing metabolic stress-induced increases in mitochondrial ROS, which are responsible for triggering necrosis.</p> <p>Conclusions</p> <p>These results suggest that Dlx-2 may be involved in tumor progression via the regulation of metabolic stress-induced necrosis.</p
Blockade of Airway Inflammation by Kaempferol via Disturbing Tyk-STAT Signaling in Airway Epithelial Cells and in Asthmatic Mice
Asthma is characterized by bronchial inflammation causing increased airway hyperresponsiveness and eosinophilia. The interaction between airway epithelium and inflammatory mediators plays a key role in the asthmatic pathogenesis. The in vitro study elucidated inhibitory effects of kaempferol, a flavonoid found in apples and many berries, on inflammation in human airway epithelial BEAS-2B cells. Nontoxic kaempferol at ≤20 μM suppressed the LPS-induced IL-8 production through the TLR4 activation, inhibiting eotaxin-1 induction. The in vivo study explored the demoting effects of kaempferol on asthmatic inflammation in BALB/c mice sensitized with ovalbumin (OVA). Mouse macrophage inflammatory protein-2 production and CXCR2 expression were upregulated in OVA-challenged mice, which was attenuated by oral administration of ≥10 mg/kg kaempferol. Kaempferol allayed the airway tissue levels of eotaxin-1 and eotaxin receptor CCR3 enhanced by OVA challenge. This study further explored the blockade of Tyk-STAT signaling by kaempferol in both LPS-stimulated BEAS-2B cells and OVA-challenged mice. LPS activated Tyk2 responsible for eotaxin-1 induction, while kaempferol dose-dependently inhibited LPS- or IL-8-inflamed Tyk2 activation. Similar inhibition of Tyk2 activation by kaempferol was observed in OVA-induced mice. Additionally, LPS stimulated the activation of STAT1/3 signaling concomitant with downregulated expression of Tyk-inhibiting SOCS3. In contrast, kaempferol encumbered STAT1/3 signaling with restoration of SOCS3 expression. Consistently, oral administration of kaempferol blocked STAT3 transactivation elevated by OVA challenge. These results demonstrate that kaempferol alleviated airway inflammation through modulating Tyk2-STAT1/3 signaling responsive to IL-8 in endotoxin-exposed airway epithelium and in asthmatic mice. Therefore, kaempferol may be a therapeutic agent targeting asthmatic diseases
Torus Hyperplasia of the Pyloric Antrum
Primary or idiopathic hypertrophy of the pyloric muscle in adult, so called torus hyperplasia, is an infrequent but an established entity. It is caused by a circular muscle hypertrophy affecting the lesser curvature near the pylorus. Since most of the lesions are difficult to differentiate from tumor, distal gastrectomy is usually preformed to rule out most causes of pyloric lesions including neoplastic ones through a pathological study. A 56-yr-old man with a family history of gastric cancer presented with abdominal discomfort of 1 month duration. Upper gastrointestinal endoscopy showed a 1.0 cm sized irregular submucosal lesion proximal to the pylorus to the distal antrum on the lesser curvature. On colonoscopy examination, a 1.5 cm sized protruding mass was noticed on the appendiceal orifice. Gastrectomy and cecectomy were done, and histological section revealed marked hypertrophy of the distal circular pyloric musculature and an appendiceal mucocele. To the best of our knowledge, this is the first case of torus hyperplasia with appendiceal mucocele which is found incidentally
Crystal structures of murine norovirus-1 RNA-dependent RNA polymerase in complex with 2-thiouridine or ribavirin
AbstractMurine norovirus-1 (MNV-1) shares many features with human norovirus (HuNoV) and both are classified within the norovirus genus of Caliciviridae family. MNV-1 is used as the surrogate for HuNoV research since it is the only form that can be grown in cell culture. HuNoV and MNV-1 RNA dependent RNA polymerase (RdRp) proteins with the sequence identity of 59% show essentially identical conformations. Here we report the first structural evidence of 2-thiouridine (2TU) or ribavirin binding to MNV-1 RdRp, based on the crystal structures determined at 2.2Ã… and 2.5Ã… resolutions, respectively. Cellular and biochemical studies revealed stronger inhibitory effect of 2TU on the replication of MNV-1 in RAW 264.7 cells, compared to that of ribavirin. Our complex structures highlight the key interactions involved in recognition of the nucleoside analogs which block the active site of the viral RNA polymerase
Dimeric configuration of SeqA protein bound to a pair of hemi-methylated GATC sequences
The binding of SeqA protein to hemi-methylated GATC sequences (hemi-sites) regulates chromosome initiation and the segregation of replicated chromosome in Escherichia coli. We have used atomic force microscopy to examine the architecture of SeqA and the mode of binding of one molecule of SeqA to a pair of hemi-sites in aqueous solution. SeqA has a bipartite structure composed of a large and a small lobe. Upon binding of a SeqA molecule to a pair of hemi-sites, the larger lobe becomes visibly separated into two DNA binding domains, each of which binds to one hemi-site. The two DNA binding domains are held together by association between the two multimerization domains that make up the smaller lobe. The binding of each DNA binding domain to a hemi-site leads to bending of the bound DNA inwards toward the bound protein. In this way, SeqA adopts a dimeric configuration when bound to a pair of hemi-sites. Mutational analysis of the multimerization domain indicates that, in addition to multimerization of SeqA polypeptides, this domain contributes to the ability of SeqA to bind to a pair of hemi-sites and to its cooperative behavior
Dissolution behaviors of PuO2(cr) in natural waters
PuO2(cr) dissolution in natural water was investigated at 25°C and 60°C under atmospheric conditions. The concentration of Pu in solutions [Pu], was monitored for 1 year of reaction time. PuO2(cr) dissolution in natural water reached a steady state within 2 months at 25°C. The [Pu] in groundwater and seawater at pH 8 were in the range of [Pu] = 0.9–34 and 3.4–27 nM, respectively. The [Pu] in concrete porewater (rainwater equilibrated with concrete) at pH 8.1–10.9 was in the range of 0.1–3.2 nM. The [Pu] and pH values of groundwater were similar to those of seawater samples having a high ionic strength. The measured [Pu] at equilibrium in all samples was higher than the calculated solubility curves for PuO2(am, hyd). Experimental evidence is insufficient to confirm the oxidation state of Pu in solution and solid phases. However, the results of geochemical modeling indicate that PuO2(am, hyd) and aqueous Pu(IV) species are dominant in natural water samples of this work. The dissolution behavior of PuO2(cr) in natural waters is comparable to the oxidative dissolution of PuO2(am, hyd) in the presence of PuO2(coll, hyd). The dissolution of PuO2 in groundwater decreased at higher temperatures, whereas the influence of temperature in seawater and porewater was not significant under these experimental conditions
Structural and optical properties of position-retrievable low-density GaAs droplet epitaxial quantum dots for application to single photon sources with plasmonic optical coupling
The position of a single GaAs quantum dot (QD), which is optically active, grown by low-density droplet epitaxy (DE) (approximately 4 QDs/μm2), was directly observed on the surface of a 45-nm-thick Al0.3Ga0.7As capping layer. The thin thickness of AlGaAs capping layer is useful for single photon sources with plasmonic optical coupling. A micro-photoluminescence for GaAs DE QDs has shown exciton/biexciton behavior in the range of 1.654 to 1.657 eV. The direct observation of positions of low-density GaAs DE QDs would be advantageous for mass fabrication of devices that use a single QD, such as single photon sources.Publisher PDFPeer reviewe
Overexpression of BrSAC1 encoding a phosphoinositide phosphatase isolated from Chinese cabbage (Brassica rapa L) improved tolerance to cold, dehydration, and salt stresses in transgenic tobacco
This study demonstrates the isolation and characterization of cDNA encoding a phosphoinositide phosphatase (PIP) from a stem cell cDNA library of Chinese cabbage (Brassica rapa) seedling. The full length gene (BrSAC1; GenBank accession no., GU434275) contained 1999 base pairs (bp), with an open reading frame of 1785 bp, encoding a polypeptide of 594 amino acids with a predicted molecular weight of 65 kDa, including a putative N-terminal signal peptide (the signal peptide counted within the 594 residues). Other regions found within the sequence include a conserved KXKXX COPI-binding motif and a consensus Cx5R (T/S) catalytic motif. BrSAC1 protein shares 92% identity with AtSac1B, and 86% identity with AtRHD4 at the amino acid level. Gene expression analyses revealed that BrsSAC1 was constitutively expressed at high levels in the pistil, stamen and flower bud, whereas it was expressed at low levels in the leaf and stem. In addition to injury, BrSAC1 expression was also induced in response to different types of stress condition, namely cold, desiccation, salt, submergence, abscisic acid and heavy metals. Overexpression of BrSAC1 in transgenic tobacco conferred tolerance to cold, dehydration, and salt stress at the seed germination/seedling stage as reflected by the percentage of germination/green seedlings, the fresh weight of seedlings and their development pattern. Our data suggest that BrSAC1 is an important stress response determinant in plants.Keywords: Abiotic stress, Brassica rapa, phosphoinositide phosphatase, transgenic plantAfrican Journal of Biotechnology Vol. 12(15), pp. 1782-179
- …