1,977 research outputs found
Rewriting magnetic phase change memory by laser heating
Magnetic phase change memory (MAG PCM) consists of bits with different magnetic permeability values. The bits are read by measuring their effect on a magnetic probe field. Previously low permeability crystalline bits had been written in high permeability amorphous films of Metglas via laser heating. Here data is presented showing that by applying short laser pulses with the appropriate power to previously crystallized regions they can first be vitrified and then again crystallized. Thus, MAG PCM is rewriteable. Technical issues in processing the bits are discussed and results on thermal modeling are presented
Magnetization precession and domainwall structure in cobalt-ruthenium-cobalt trilayers
The magnetization dynamics of Co(5 nm)/Ru/Co(5 nm) trilayers with Ru thicknesses from 0.3–0.6 nm is experimentally and theoretically investigated. The coupling between the Co layers is antiferromagnetic (AFM) and yields a stable AFM domain structure with frozen domain walls. Comparing high-resolution magnetic force microscopy (MFM) and pump-probe measurements, we analyze the behavior of the films for different field-strength regimes. For moderate magnetic fields, pump-probe measurements provide dynamic characterization of the coupled precessional modes in the GHz range. The dynamics at small fields is realized by the pinning of AFM domain walls at inhomogeneities. The MFM images yield a domain-wall width that varies from about 150–60 nm. This behavior is explained in terms of a micromagnetic local-anisotropy model
ESR investigations on Ca perovskite
Electron spin resonance studies on fine powders of La0.65Ca0.35MnO3, performed in the X band, are reported. The coexistence of paramagnetic and ferromagnetic phases, in a narrow temperature range close to the Curie temperature, is observed. The electron spin resonance measurements do not support the presence of bipolarons above the Curie temperature. Temperature dependence of the ESR linewidth is governed by the hopping of polarons and the corresponding activation energy is about 150 meV above Tc
Tunneling magnetoresistance sensors with different coupled free layers
Large differences of magnetic coercivity (HC), exchange coupling field (HE), and tun- neling magnetoresistance ratio (TMR) in magnetic tunnel junctions with different coupled free layers are discussed. We demonstrate that the magnetization behavior of the free layer is not only dominated by the interfacial barrier layer but also affected largely by the magnetic or non-magnetic coupled free layers. All these parameters are sensitively controlled by the magnetic nanostructure, which can be tuned also by the magnetic annealing process. The optimized sensors exhibit a large field sensitivity of up to 261%/mT in the region of the reversal synthetic ferri- magnet at the pinned layers
Twitter Corpus of the #BlackLivesMatter Movement And Counter Protests: 2013 to 2020
Black Lives Matter (BLM) is a grassroots movement protesting violence towards
Black individuals and communities with a focus on police brutality. The
movement has gained significant media and political attention following the
killings of Ahmaud Arbery, Breonna Taylor, and George Floyd and the shooting of
Jacob Blake in 2020. Due to its decentralized nature, the #BlackLivesMatter
social media hashtag has come to both represent the movement and been used as a
call to action. Similar hashtags have appeared to counter the BLM movement,
such as #AllLivesMatter and #BlueLivesMatter. We introduce a data set of 41.8
million tweets from 10 million users which contain one of the following
keywords: BlackLivesMatter, AllLivesMatter and BlueLivesMatter. This data set
contains all currently available tweets from the beginning of the BLM movement
in 2013 to June 2020. We summarize the data set and show temporal trends in use
of both the BlackLivesMatter keyword and keywords associated with counter
movements. In the past, similarly themed, though much smaller in scope, BLM
data sets have been used for studying discourse in protest and counter protest
movements, predicting retweets, examining the role of social media in protest
movements and exploring narrative agency. This paper open-sources a large-scale
data set to facilitate research in the areas of computational social science,
communications, political science, natural language processing, and machine
learning
Plasmon Enhanced Quantum Properties of Single Photon Emitters with Hybrid Hexagonal Boron Nitride Silver Nanocube Systems
Hexagonal boron nitride (hBN) has emerged as a promising ultrathin host of
single photon emitters (SPEs) with favorable quantum properties at room
temperature, making it a highly desirable element for integrated quantum
photonic networks. One major challenge of using these SPEs in such applications
is their low quantum efficiency. Recent studies have reported an improvement in
quantum efficiency by up to two orders of magnitude when integrating an
ensemble of emitters such as boron vacancy defects in multilayered hBN flakes
embedded within metallic nanocavities. However, these experiments have not been
extended to SPEs and are mainly focused on multiphoton effects. Here, we study
the quantum single photon properties of hybrid nanophotonic structures composed
of SPEs created in ultrathin hBN flakes coupled with plasmonic silver
nanocubes. We demonstrate > 200% plasmonic enhancement of the SPE properties,
manifested by a strong increase in the SPE fluorescence. Such enhancement is
explained by rigorous numerical simulations where the hBN flake is in direct
contact with the Ag nanocubes that cause the plasmonic effects. The presented
strong and fast single photon emission obtained at room-temperature with a
compact hybrid nanophotonic platform can be very useful to various emerging
applications in quantum optical communications and computing
Detection of Iron in Nanoclustered Cytochrome C Proteins Using Nitrogen-Vacancy Magnetic Relaxometry
Nitrogen-vacancy (NV) magnetometry offers an alternative tool to detect iron
levels in neurons and cells with a favorable combination of magnetic
sensitivity and spatial resolution. Here we employ NV-T1 relaxometry to detect
Fe in cytochrome C (Cyt-C) nanoclusters. Cyt-C is a water-soluble protein that
contains a single heme group and plays a vital role in the electron transport
chain of mitochondria. Under ambient conditions, the heme group remains in the
Fe+3 paramagnetic state. We perform NV-T1 relaxometry on a functionalized
diamond chip and vary the concentration of Cyt-C from 6 uM to 54 uM, resulting
in a decrease of T1 from 1.2 ms to 150 us, respectively. This reduction is
attributed to spin-noise originating from the Fe spins present within the
Cyt-C. We perform relaxometry imaging of Cyt-C proteins on a nanostructured
diamond chip by varying the density of adsorbed iron from 1.44 x 10^6 to 1.7 x
10^7 per um^2
Harmonic Reduction of a Single-Phase Multilevel Inverter Using Genetic Algorithm and Particle Swarm Optimization
Power inverter play an important role in power system especially with its capability on reducing system size and increase efficiently. The recent research trends of power electronic system are focusing on multilevel inverter topics in optimization on voltage output, reducing the total harmonics distortion, modulation technique, and switching configuration. The research emphasizes the optimization with a fundamental switching frequency method that is the optimized harmonic stepped waveform (OHSW) modulation method. The selective harmonic elimination (SHE) calculation has adapted with genetic algorithm (GA) and particle swarm optimization (PSO) in order to speed up the calculation. Both bioinspired algorithms are compared in terms of total harmonic distortion (THD) and selective harmonic elimination for both equal and unequal sources. The overall result showed that both algorithms have high accuracy in solving the nonlinear equation. However, the genetic algorithm showed better output quality in terms of selective harmonic elimination which overall no exceeding 0.4%. Particle swarm optimization shows strength in finding the best total harmonic distortion where in seven-level cascaded H-bridge multilevel inverter (m=0.8) shows 6.8% only as compared to genetic algorithm. Simulation for three-level, five-level, and seven-level for each multilevel inverter at different circumferences had been done in this research. The result draws out a conclusion where the possibility of having a filterless high-efficient inverter can be achieved
L10 CrPt phase formation and magnetic properties
L10-ordered antiferromagnetic CrPt is of interest as a pinning material in exchange-biased system due to its many intriguing properties and such alloy with a (001) texture has also been used to serve as an underlayer to promote the L10 phase formation of other materials. Therefore, it is important to control not only the L10 phase formation of such material but also the texture of its ordered phase. A systematic study of the L10 phase formation of CrPt thin film was performed. The anisotropy of CrPt L10 phase has also been investigated both experimentally using CrPt/Fe bilayer system and theoretically using first principle calculation. The experimental result is in consistent with the theoretical estimation within the present thin film limitation
- …