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Large differences of magnetic coercivity (HC), exchange coupling field (HE), and tun-
neling magnetoresistance ratio (TMR) in magnetic tunnel junctions with different
coupled free layers are discussed. We demonstrate that the magnetization behav-
ior of the free layer is not only dominated by the interfacial barrier layer but also
affected largely by the magnetic or non-magnetic coupled free layers. All these
parameters are sensitively controlled by the magnetic nanostructure, which can be
tuned also by the magnetic annealing process. The optimized sensors exhibit a large
field sensitivity of up to 261%/mT in the region of the reversal synthetic ferri-
magnet at the pinned layers. © 2017 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4977774]

I. INTRODUCTION

The development of high-sensitivity magnetoresistive sensors involves many practical param-
eters, such as tunneling magnetoresistance ratio (TMR), coercivity (HC), exchange-coupling field
(HE), that need to be optimized for the overall performance of the sensors. There are several
methods to modify the magnetic properties of the free layer in magnetic tunnel junctions. These
methods include using a hard magnet or magnetic field bias, using an orthogonal synthetic-
ferrimagnet coupled layer, and using two-step or three-step orthogonal annealing processes.1–29

The designed shape and geometry of external magnetic concentrators also affect the sensor
performance.30,31

In this study, we discuss large differences in magnetic coercivity (HC), exchange coupling
field (HE), and tunneling magnetoresistance ratio (TMR) in magnetic tunnel junctions containing
magnetic or non-magnetic coupled free layers. By optimizing the TMR ratio, HC, HE, and mag-
netic flux concentrators, we fabricate an ultra-high-sensitivity magnetic sensor with low dissipative
power.

II. EXPERIMENT

The samples are deposited on three-inch thermally oxidized silicon wafers in a magnetron sput-
tering system with a base pressure of 8 x 10�9 Torr and typical deposition pressures in the range
of 2-10 mTorr. A MgO tunneling barrier is obtained by rf sputtering of a MgO target at a power of
100 W. The thickness of the MgO barrier is estimated to be about 2 nm based on the resistance-area
(RA) product of about 50 kΩ µm2.32 The investigated MTJ layer structures (with thicknesses in
nanometers) are as follows (see Fig. 1):
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FIG. 1. Schematic MTJ structures with three different designs of free layer: (a) MTJ-S1 1.3 nm Co40Fe40B20, (b) MTJ-S2
1.3 nm Co40Fe40B20 with additional 0.6 nm MgO layer, and (c) MTJ-S3 1.3 nm Co40Fe40B20/0.6 nm Ru/1.3 nm Co40Fe40B20.

S1 (1.5 Ta/25 Ru/7 Ir20Mn80/2.2 Co30Fe70/0.85 Ru/2.8 Co40Fe40B20/2 MgO/1.3 Co40Fe40B20/2
Ta/15 Ru);

S2 (1.5 Ta/25 Ru/7 Ir20Mn80/2.2 Co30Fe70/0.85 Ru/2.8 Co40Fe40B20/2 MgO/1.3 Co40Fe40B20/0.6
MgO/2 Ta/15 Ru);

S3 (1.5 Ta/25 Ru/7 Ir20Mn80/2.2 Co30Fe70/0.85 Ru/2.8 Co40Fe40B20/2 MgO/1.3 Co40Fe40B20/0.6
Ru/1.3 Co40Fe40B20/2 Ta/15 Ru).

The MTJ junctions were patterned into circles of 30 µm in diameter by photolithography and
argon milling. They were then annealed at 350 ◦C in a magnetic field of 1 T for 1 hour in a vacuum
of 2 x 10�8 Torr. The annealing magnetic field sets the pinning direction of the pinned layer, along
one axis of the circle. The second annealing process was done at 320 ◦C in 0.1 T for 10 hours. The
direction of the 0.1 T magnetic field is perpendicular (90o) to the pinning direction of the pinned layer
(in the same plane of pinned layer) to ensure orthogonality between the free layer and the pinned
layer. In order to reduce the noise of the sensors, 64 magnetic tunnel junctions were connected into
a Wheatstone bridge to form a magnetic field sensor. This magnetic sensor bridge is asymmetric as
described in our previous work.3 As a result of the design, the output signal Vout can be amplified by
a factor of 2. During the measurement of the sensor performance, the input voltage is 1 V, supplied
by batteries to minimize noise. In this study, we used Conetic alloy (Fe16Ni79Mo5) for magnetic flux
concentrators (MFC) that were annealed under a pressure of 10-7 Torr at 1150 ◦C for 20 hours with
a cooling rate of about 1 ◦C/min. The saturation induction (Bsat) of this annealed conetic alloy is
about 0.8 T, maximum permeability (µr) reaches about 45,000, and the coercive field (Hc) is about
1.5 µT. The thickness of the external MFC is 1.5 mm, and the gap between two concentrators is about
0.5 mm. All measurements were taken under ambient conditions.

III. RESULT AND DISCUSSION

As shown in Fig. 2, magnetoresistance and applied magnetic field curves were measured
along the direction of the easy axis of the pinned layer, which were set after the first annealing

FIG. 2. Magnetoresistance vs. applied magnetic field curves of MTJs with three different designs of free layer: (a) 1.3 nm
Co40Fe40B20, (b) 1.3 nm Co40Fe40B20 with an additional 0.6 nm MgO layer, and (c) 1.3 nm Co40Fe40B20/0.6 nm Ru/1.3 nm
Co40Fe40B20, measured in a magnetic field ranging from -110 mT to +110 mT in the direction of the easy axis of the pinned
layer.
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FIG. 3. Magnetoresistance curves of MTJ-S2 and MTJ-S3 measured in a magnetic field varying from -10 mT to +10 mT in
the direction of the easy axis of the pinned layer.

process at 350 ◦C under a 1-Tesla magnetic field for 1 hour. Fig. 2(a) shows the magnetoresis-
tance curve of MTJ-S1 with only a 1.3-nm Co40Fe40B20 layer as the free layer. It has no hysteresis
in a wide magnetic field range, and the TMR of MTJ-S1 is about 39 %. Fig. 2(b) shows the
magnetoresistance curve of MTJ-S2 that has 1.3 nm Co40Fe40B20 with additional 0.6 nm MgO
added to the free layer. The TMR of MTJ-S2 is about 137% which is much higher than that
of MTJ-S1. Fig. 2(c) shows the magnetoresistance curve of MTJ-S3 which has a free layer of
1.3 nm Co40Fe40B20/0.6 nm Ru/1.3 nm Co40Fe40B20. MTJ-S3 has additional 0.6 nm Ru and 1.3 nm
Co40Fe40B20 compared with sample MTJ-S1. The TMR of MTJ-S3 is about 120%, slightly less than
that of sample MTJ-S2. Both MTJ-S2 and MTJ-S3 have a much smaller saturation field than sample
MTJ-S1.

Fig. 3 shows the magnetoresistance curves of MTJ-S2 and MTJ-S3, which were measured in a
magnetic field varying from -10 mT to +10 mT in the direction of the easy axis of the pinned layer.
The coercivity (HC) of MTJ-S2 is about 1.7 mT, and the exchange coupling field (HE) is 5.6 mT. By
comparison, MTJ-S3 has a much smaller coercivity HC (0 -1.0 mT) and a much smaller exchange
coupling field (HE = 1.9 mT) than MTJ-S2. In Table I, parameters related to the overall performance
of the sensors are listed, such as tunneling magnetoresistance ratio (TMR), coercivity (HC), and
exchange coupling field (HE), where TMR is defined as 100% x (Rmax –Rmin)/Rmin. In general, the
HC and HE are evaluated from the middle between Rmax and Rmin. For asymmetric resistance as
a function of applied magnetic field (such as the MTJ-S3 curve in Fig. 3(b)), we need to evaluate
HC and HE from several resistance positions (other than the middle between Rmax and Rmin). It is
clearly shown that the overall magnetic parameters of MTJ-S3 are better than those of all other MTJ
samples.

It has been shown previously30,31 that the magnetic flux concentrators (MFCs) with t-shape,
tanga-shape, triangle-shape, and cone-shape are better than concentrators of bar-shape. Our con-
centrators were designed by combining the t-shape and the triangle-shape. From our previous
study,33 it was also found that the decrease of gap between the two concentrators results in the
increase of magnetic flux density. The gap between MFCs in our design, 0.5 mm, could be achieved
with a notch added at the tip of each MFC. The magnetic flux density would be amplified about
216 times.

Fig. 4 shows the output voltage as a function of the applied magnetic field for the MTJ-
S3 sensor device without MFC (a) and with MFC (b). The input voltage of the sensor is 1 V

TABLE I. Magnetic properties of three magnetic tunnel junctions with different free layers.

TMR HC HE

MTJ-S1 39 % ∼ 0 mT –
MTJ-S2 137 % 1.7 mT 5.6 mT
MTJ-S3 120 % 0 ∼ 1.0 mT 1.9 mT
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FIG. 4. Output voltage (Vout) of the magnetic sensor bridge as a function of the magnetic field in an applied input voltage of
1 V for (a) sensor-S3 (made from MTJ-S3), and (b) sensor-S3 with a pair of MFCs.

FIG. 5. The output voltage of the sensor as a function of the applied magnetic field in the range of (a) ±1 mT (b) 0.2 mT to
0.23 mT. The magnetic sensor operates under an applied input voltage of 1 V. The sensitivity of this sensor is 261 %/mT at
the reversal region of the pinned layer.

supplied by battery. After the integration of MFC, there is no obvious change in the magnetic
reversal behavior and the output voltage of the sensor, but the sensitivity of the magnetic sensor
is increased by a factor of 216. Fig. 4(b) shows the output voltage of the sensor as a func-
tion of the applied magnetic field in the range of ±50 µT. If we use the slope in Fig. 4(b) to
calculate the sensitivity, as done by many other groups, the sensitivity of the sensor is about
10,374 %/mT.6,8,12

As shown in Fig. 5, this sensor can operate in a very low bias magnetic field (only a few tenths of
mT) that corresponds to the reversal region of the pinned layer. In this field region, the magnetization
of the free layer is fully saturated (the magnetic noise from the free layer will be reduced). Thus,
the sensor is expected to have a smaller magnetic noise. Fig. 5(b) shows a good linear response of
the sensor’s output voltage as a function of the applied magnetic field in the range of 0.2 mT to
0.23 mT.

IV. CONCLUSIONS

In summary, we have investigated three designs of magnetic tunnel junctions with different mag-
netic free layer structures. The added layer of 0.6 nm MgO in MTJ-S2 above the 1.3 nm Co40Fe40B20

free layer improves the crystalline quality, so that the MR loop exhibits a high TMR. The addition
of 0.6 nm Ru and 1.3 nm Co40Fe40B20 above the 1.3 nm Co40Fe40B20 free layer in MTJ-S3 intro-
duces a ferromagnetic-ferromagnetic exchange coupling with the free layer that improves the overall
qualities of MTJ. It has small values of HC and HE with a TMR greater than 100%. We also show a
new possibility of applying the magnetic sensor in the magnetic field range in which the pinned layer
is reversed. The reversal behavior of the Co40Fe40B20 in the pinned layer could be a new sensing
mechanism for high sensitivity and low noise sensors.
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