6,556 research outputs found

    Signatures of spin-triplet excitations in optical conductivity of valence bond solids

    Full text link
    We show that the optical responses below the Mott gap can be used to probe the spin-triplet excitations in valence bond solid (VBS) phases in Mott insulators. The optical conductivity in this regime arises due to the electronic polarization mechanism via virtual electron hopping processes. We apply this mechanism to the Hubbard model with spin-orbit couplings and/or the corresponding spin model with significant Dzyaloshinskii-Moriya (DM) interactions, and compute the optical conductivity of VBS states on both ideal and deformed Kagome lattices. In case of the deformed Kagome lattice, we study the antiferromagnet, Rb2_2Cu3_3SnF12_{12} with the pinwheel VBS state. In case of the ideal Kagome lattice, we explore the optical conductivity signatures of the spin-triplet excitations for three VBS states with (1) a 12-site unit cell, (2) a 36-site unit cell with six-fold rotation symmetry, and (3) a 36-site unit cell with three-fold rotation symmetry, respectively. We find that increasing the DM interactions generally leads to broad and smooth features in the optical conductivity with interesting experimental consequences. The optical conductivity reflects the features of the spin-triplet excitations that can be measured in future experiments.Comment: Updated with the published version. 24 pages and 8 figure

    Thermoelectric effects in quantum Hall systems beyond linear response

    Get PDF
    We consider a quantum Hall system with an antidot acting as an energy dependent scatterer. In the purely charge case, we find deviations from the Wiedemann-Franz law that take place in the nonlinear regime of transport. We also discuss Peltier effects beyond linear response and describe both effects using magnetic-field asymmetric transport coefficients. For the spin case such as that arising along the helical edge states of a two-dimensional topological insulator, we investigate the generation of spin currents as a result of applied voltage and temperature differences in samples attached to ferromagnetic leads. We find that in the parallel configuration the spin current can be tuned with the leads' polarization even in the linear regime of transport. In contrast, for antiparallel magnetizations the spin currents has a strict nonlinear dependence on the applied fields.Comment: 17 pages, 8 figure

    Large thermoelectric power and figure of merit in a ferromagnetic-quantum dot-superconducting device

    Get PDF
    We investigate the thermoelectric properties of a quantum dot coupled to ferromagnetic and superconducting electrodes. The combination of spin polarized tunneling at the ferromagnetic-quantum dot interface and the application of an external magnetic field that Zeeman splits the dot energy level leads to large values of the thermopower (Seebeck coefficient). Importantly, the thermopower can be tuned with an external gate voltage connected to the dot. We compute the figure of merit that measures the efficiency of thermoelectric conversion and find that it attains high values. We discuss the different contributions from Andreev reflection processes and quasiparticle tunneling into and out of the superconducting contact. Furthermore, we obtain dramatic variations of both the magnetothermopower and the spin Seebeck effect, which suggest that in our device spin currents can be controlled with temperature gradients only.Comment: 9 pages, 6 figure

    Cross thermoelectric coupling in normal-superconductor quantum dots

    Get PDF
    We discuss the nonlinear current of an interacting quantum dot coupled to normal and superconducting reservoirs with applied voltage and temperature differences. Due to the particle-hole symmetry introduced by the superconducting lead, the pure (subgap) thermoelectric response vanishes. However, we show that the Andreev bound states shift as the thermal gradient increases. As a consequence, the II--VV characteristic can be tuned with a temperature bias if the system is simultaneously voltage biased. This is a cross effect that occurs beyond linear response only. Furthermore, we emphasize the role of quasiparticle tunneling processes in the generation of high thermopower sensitivities.Comment: 6 pages, 5 figure

    Optimal Estimation of a Classical Force with a Damped Oscillator in the non-Markovian Bath

    Get PDF
    We solve the optimal quantum limit of probing a classical force exactly by a damped oscillator initially prepared in the factorized squeezed state. The memory effects of the thermal bath on the oscillator evolution are investigated. We show that the optimal force sensitivity obtained by the quantum estimation theory approaches to zero for the non-Markovian bath, whereas approaches to a finite non-zero value for the Markovian bath as the energy of the damped oscillator goes to infinity.Comment: 5 pages, 4 figure
    • …
    corecore