364 research outputs found

    Oxidative Degradation of Tetracycline by Magnetite and Persulfate: Performance, Water Matrix Effect, and Reaction Mechanism.

    Get PDF
    This study presents a strategy to remove tetracycline by using magnetite-activated persulfate. Magnetite (Fe3O4) was synthesized at high purity levels-as established via X-ray diffractometry, transmission electron microscopy, and N2 sorption analyses-and tetracycline was degraded within 60 min in the presence of both magnetite and persulfate (K2S2O8), while the use of either substance yielded limited degradation efficiency. The effects of magnetite and persulfate dosage, the initial concentration of tetracycline, and the initial pH on the oxidative degradation of tetracycline were interrogated. The results demonstrate that the efficiency of tetracycline removal increased in line with magnetite and persulfate dosage. However, the reaction rate increased only when increasing the magnetite dosage, not the persulfate dosage. This finding indicates that magnetite serves as a catalyst in converting persulfate species into sulfate radicals. Acidic conditions were favorable for tetracycline degradation. Moreover, the effects of using a water matrix were investigated by using wastewater treatment plant effluent. Comparably lower removal efficiencies were obtained in the effluent than in ultrapure water, most likely due to competitive reactions among the organic and inorganic species in the effluent. Increased concentrations of persulfate also enhanced removal efficiency in the effluent. The tetracycline degradation pathway through the magnetite/persulfate system was identified by using a liquid chromatograph-tandem mass spectrometer. Overall, this study demonstrates that heterogeneous Fenton reactions when using a mixture of magnetite and persulfate have a high potential to control micropollutants in wastewater

    The involvement of GSK3ฮฒ for glycogen synthesis throughout the annual cycle of Pacific oyster, Crassostrea gigas (Magallana gigas)

    Get PDF
    Crassostrea gigas is a frequently studied species in understanding physiological processes in bivalves. Similar to other animals, oysters store glucose in the body as glycogen. Glycogen is known to supply energy for germ cell development and maintenance. Glycogen is synthesized by glycogen synthase. GSK3ฮฒ regulates glycogen synthase activity and plays an important role in glycogen synthesis. Therefore, this study aims to examine the effect of GSK3ฮฒ on the annual cycle of oysters and the glycogen synthesis pathway and to investigate the energy pathway in comparison with seasonal variation. Oysters were sampled monthly for one year and were subjected to glycogen content, RT-PCR, FISH, and western blot analysis. The year-round glycogen content significantly differs only in the mantle edge during spring and summer of both sexes but not in labial palp, digestive gland, gonad, and adductor muscle. The expression of GSK3ฮฒ mRNA level was highest in October for females and April for males. Both sexes had the lowest expression in July. In the adductor muscle, females and males showed the highest expression in April and the lowest in July and October. The pattern of GSK3ฮฒ expression in gonads and adductor muscle was similarly confirmed through FISH. As a result of examining the signaling system, p-GSK3ฮฒ (serine 9) increased. At the same time, glycogen synthase decreased in May when the condition index was the highest, p-GSK3ฮฒ decreased in October and July when spawning occurred, and glycogen synthase increased. Overall, it is thought that p-GSK3ฮฒ expression is high in C. gigas at ripe, which inhibits glycogen synthesis and is used as energy for growth and maturation. Glycogen synthesis occurs for energy storage during degeneration

    Systematic analysis of expression signatures of neuronal subpopulations in the VTA

    Get PDF
    Gene expression profiling across various brain areas at the single-cell resolution enables the identification of molecular markers of neuronal subpopulations and comprehensive characterization of their functional roles. Despite the scientific importance and experimental versatility, systematic methods to analyze such data have not been established yet. To this end, we developed a statistical approach based on in situ hybridization data in the Allen Brain Atlas and thereby identified specific genes for each type of neuron in the ventral tegmental area (VTA). This approach also allowed us to demarcate subregions within the VTA comprising specific neuronal subpopulations. We further identified WW domain-containing oxidoreductase as a molecular marker of a population of VTA neurons that co-express tyrosine hydroxylase and vesicular glutamate transporter 2, and confirmed their region-specific distribution by immunohistochemistry. The results demonstrate the utility of our analytical approach for uncovering expression signatures representing specific cell types and neuronal subpopulations enriched in a given brain area.This work was supported by the grants from National Research Foundations of Korean Ministry of Science and ICT (2018M3C7A1024152, 2018R1A3B1052079, 2019M3A9B6066967, and 2019R1A6A1A10073437) and the Institute for Basic Science (IBS-R013-A1)

    A Case of Occupational Rhinitis Caused by Rice Powder in the Grain Industry

    Get PDF
    Rice is the major staple food in a large part of the world, especially in Asia. Hypersensitivity reactions to rice are rare. Moreover, cases of occupational allergies induced by inhalation of rice powder are uncommon. We report a 31-year-old male with work-related rhinitis and conjunctivitis symptoms caused by occupational exposure to rice powder in the grain industry. He showed positive responses to rice extracts on a skin prick test, and a high level of serum specific IgE to rice was detected by ELISA. Occupational rhinitis was confirmed by a nasal provocation test with rice extracts. An IgE ELISA inhibition test showed cross-creativity between rice and various grass pollen extracts. These findings suggest that the inhalation of rice powder can induce IgE-mediated occupational rhino-conjunctivitis, which may be derived from cross-reactivity to major grass pollens

    Systemic Analysis of Heat Shock Response Induced by Heat Shock and a Proteasome Inhibitor MG132

    Get PDF
    The molecular basis of heat shock response (HSR), a cellular defense mechanism against various stresses, is not well understood. In this, the first comprehensive analysis of gene expression changes in response to heat shock and MG132 (a proteasome inhibitor), both of which are known to induce heat shock proteins (Hsps), we compared the responses of normal mouse fibrosarcoma cell line, RIF- 1, and its thermotolerant variant cell line, TR-RIF-1 (TR), to the two stresses. The cellular responses we examined included Hsp expressions, cell viability, total protein synthesis patterns, and accumulation of poly-ubiquitinated proteins. We also compared the mRNA expression profiles and kinetics, in the two cell lines exposed to the two stresses, using microarray analysis. In contrast to RIF-1 cells, TR cells resist heat shock caused changes in cell viability and whole-cell protein synthesis. The patterns of total cellular protein synthesis and accumulation of poly-ubiquitinated proteins in the two cell lines were distinct, depending on the stress and the cell line. Microarray analysis revealed that the gene expression pattern of TR cells was faster and more transient than that of RIF-1 cells, in response to heat shock, while both RIF-1 and TR cells showed similar kinetics of mRNA expression in response to MG132. We also found that 2,208 genes were up-regulated more than 2 fold and could sort them into three groups: 1) genes regulated by both heat shock and MG132, (e.g. chaperones); 2) those regulated only by heat shock (e.g. DNA binding proteins including histones); and 3) those regulated only by MG132 (e.g. innate immunity and defense related molecules). This study shows that heat shock and MG132 share some aspects of HSR signaling pathway, at the same time, inducing distinct stress response signaling pathways, triggered by distinct abnormal proteins

    A secretome profile indicative of oleate-induced proliferation of HepG2 hepatocellular carcinoma cells

    Get PDF
    Increased fatty acid (FA) is often observed in highly proliferative tumors. FAs have been shown to modulate the secretion of proteins from tumor cells, contributing to tumor survival. However, the secreted factors affected by FA have not been systematically explored. Here, we found that treatment of oleate, a monounsaturated omega-9 FA, promoted the proliferation of HepG2 cells. To examine the secreted factors associated with oleate-induced cell proliferation, we performed a comprehensive secretome profiling of oleate-treated and untreated HepG2 cells. A comparison of the secretomes identified 349 differentially secreted proteins (DSPs; 145 upregulated and 192 downregulated) in oleate-treated samples, compared to untreated samples. The functional enrichment and network analyses of the DSPs revealed that the 145 upregulated secreted proteins by oleate treatment were mainly associated with cell proliferation-related processes, such as lipid metabolism, inflammatory response, and ER stress. Based on the network models of the DSPs, we selected six DSPs (MIF, THBS1, PDIA3, APOA1, FASN, and EEF2) that can represent such processes related to cell proliferation. Thus, our results provided a secretome profile indicative of an oleate-induced proliferation of HepG2 cell

    SEALONE (Safety and Efficacy of Coronary Computed Tomography Angiography with Low Dose in Patients Visiting Emergency Room) trial: study protocol for a randomized controlled trial

    Get PDF
    Objective Chest pain is one of the most common complaints in the emergency department (ED). Cardiac computed tomography angiography (CCTA) is a frequently used tool for the early triage of patients with low- to intermediate-risk acute chest pain. We present a study protocol for a multicenter prospective randomized controlled clinical trial testing the hypothesis that a low-dose CCTA protocol using prospective electrocardiogram (ECG)-triggering and limited-scan range can provide sufficient diagnostic safety for early triage of patients with acute chest pain. Methods The trial will include 681 younger adult (aged 20 to 55) patients visiting EDs of three academic hospitals for acute chest pain or equivalent symptoms who require further evaluation to rule out acute coronary syndrome. Participants will be randomly allocated to either low-dose or conventional CCTA protocol at a 2:1 ratio. The low-dose group will undergo CCTA with prospective ECG-triggering and restricted scan range from sub-carina to heart base. The conventional protocol group will undergo CCTA with retrospective ECG-gating covering the entire chest. Patient disposition is determined based on computed tomography findings and clinical progression and all patients are followed for a month. The primary objective is to prove that the chance of experiencing any hard event within 30 days after a negative low-dose CCTA is less than 1%. The secondary objectives are comparisons of the amount of radiation exposure, ED length of stay and overall cost. Results and Conclusion Our low-dose protocol is readily applicable to current multi-detector computed tomography devices. If this study proves its safety and efficacy, dose-reduction without purchasing of expensive newer devices would be possible
    • โ€ฆ
    corecore