418 research outputs found

    Current insights into genome-based personalized nutrition technology: a patent review

    Get PDF
    Unlike general nutritional ranges that meet the nutritional needs essential for maintaining the life of an entire population, personalized nutrition is characterised by maintaining health through providing customized nutrition according to individuals’ lifestyles or genetic characteristics. The development of technology and services for personalized nutrition is increasing, owing to the acquisition of knowledge about the differences in nutritional requirements according to the diversity of individuals and an increase in health interest. Regarding genetics, technology is being developed to distinguish the various characteristics of individuals and provide customized nutrition. Therefore, to understand the current state of personalized nutrition technology, understanding genomics is necessary to acquire information on nutrition research based on genomics. We reviewed patents related to personalized nutrition-targeting genomics and examined their mechanisms of action. Using the patent database, we searched 694 patents on nutritional genomics and extracted 561 highly relevant valid data points. Furthermore, an in-depth review was conducted by selecting core patents related to genome-based personalized nutrition technology. A marked increase was observed in personalized nutrition technologies using methods such as genetic scoring and disease-specific dietary recommendations

    IL-17 induces production of IL-6 and IL-8 in rheumatoid arthritis synovial fibroblasts via NF-κB- and PI3-kinase/Akt-dependent pathways

    Get PDF
    Recent studies of the pathogenesis of rheumatoid arthritis (RA) have revealed that both synovial fibroblasts and T cells participate in the perpetuation of joint inflammation as dynamic partners in a mutual activation feedback, via secretion of cytokines and chemokines that stimulate each other. In this study, we investigated the role of IL-17, a major Th1 cytokine produced by activated T cells, in the activation of RA synovial fibroblasts. Transcripts of IL-17R (IL-17 receptor) and IL-17RB (IL-17 receptor B) were present in fibroblast-like synoviocytes (FLS) of RA patients. IL-17R responded with increased expression upon in vitro stimulation with IL-17, while the level of IL-17RB did not change. IL-17 enhanced the production of IL-6 and IL-8 in FLS, as previously shown, but did not affect the synthesis of IL-15. IL-17 appears to be a stronger inducer of IL-6 and IL-8 than IL-15, and even exerted activation comparable to that of IL-1β in RA FLS. IL-17-mediated induction of IL-6 and IL-8 was transduced via activation of phosphatidylinositol 3-kinase/Akt and NF-κB, while CD40 ligation and p38 MAPK (mitogen-activated protein kinase) are not likely to partake in the process. Together these results suggest that IL-17 is capable of more than accessory roles in the activation of RA FLS and provide grounds for targeting IL-17-associated pathways in therapeutic modulation of arthritis inflammation

    Transumbilical Single Port Laparoscopic Adrenalectomy: A Technical Report on Right and Left Adrenalectomy Using the Glove Port

    Get PDF
    Recently, single port laparoscopic surgery has been the focus of attention due to the advanced laparoscopic skills accumulated from experience and developments in laparoscopic instruments. Herein, we present two cases of initial single port laparoscopic adrenalectomies. Case 1 was a 38-year-old female patient diagnosed with primary hyperaldosteronism because of a the right adrenal 2.5-cm sized adenoma, and case 2 was a 31-year-old female patient diagnosed with primary adrenal Cushing's syndrome because of a left adrenal 2.9-cm sized adenoma. Both patients successfully underwent single port laparoscopic adrenalectomies via a transumbilical transperitoneal approach. There was no estimated blood loss and the total operating times were 60 and 70 minutes, respectively. Both patients recovered uneventfully. We believe that this technique presented could provide potential benefits (lesser wound pain, better cosmetic satisfaction, and shorter convalescence) if the indications are carefully selected

    A Case of Portal Vein Thrombosis by Protein C and S Deficiency Completely Recanalized by Anticoagulation Therapy

    Get PDF
    Portal vein thrombosis (PVT) is a rare form of venous thrombosis that affects the hepatic portal vein flow, which can lead to portal hypertension. Treatment of PVT includes anticoagulants, thrombolysis, insertion of shunts, bypass surgery, and liver transplantation. Single anticoagulation therapy is not regarded as a curative treatment but can be associated with a reduction in new thrombotic episodes. We experienced a case of acute total occlusion of PVT provoked by protein C and S deficiency syndrome. PVT was completely recanalized with oral anticoagulant therapy following low molecular weight heparin therapy

    Effect of subconjunctivally injected, liposome-bound, low-molecular-weight heparin on the absorption rate of subconjunctival hemorrhage in rabbits

    Get PDF
    PURPOSE: To investigate the effect of subconjunctival injection of liposome-bound, low-molecular-weight heparin (LMWH) on the absorption rate of subconjunctival hemorrhages. METHODS: Subconjunctival hemorrhages were induced in both eyes of 30 rabbits by the subconjunctival injection of 0.1 mL of autologous blood from auricular marginal veins. After 8 hours, randomized subconjunctival injections of one of three materials were made: 5 IU/mL liposome-bound LMWH (0.1 mL) in 18 eyes (group A), only liposomes (0.1 mL) in 14 eyes (group B), the free form of LMWH (5 IU/mL, 0.1 mL) in 14 eyes (group C), or no injection in 14 eyes (group D). Subconjunctival hemorrhages were photographed with a digital camera at 8, 24, 48, 72, 96, and 120 hours after induction of subconjunctival hemorrhages, sized with an image analyzer, and compared between groups. RESULTS: Subconjunctival hemorrhages were absorbed faster in group A (liposome-bound LMWH injected) than in with group B (liposome injected). Comparison of groups A and C (free LMWH injected) showed statistical differences in the absorption rates at 96 and 120 hours except at 24, 48, and 72 hours. The mean elapsed time for the complete resorption of subconjunctival hemorrhages was shortest in group A among four groups, whereas group B and the control showed no significant differences. The ocular and systemic absorption of LMWH were significantly lower after injection of the liposome-bound than the free form. CONCLUSIONS: The subconjunctival injection of liposome-bound LMWH appears to enhance subconjunctival hemorrhage absorption in rabbits

    Metals in Particulate Pollutants Affect Peak Expiratory Flow of Schoolchildren

    Get PDF
    BACKGROUND: The contribution of the metal components of particulate pollutants to acute respiratory effects has not been adequately evaluated. Moreover, little is known about the effects of genetic polymorphisms of xenobiotic metabolism on pulmonary function. OBJECTIVES: This study was conducted to assess lung function decrement associated with metal components in particulate pollutants and genetic polymorphisms of glutathione S-transferase M1 and T1. METHODS: We studied 43 schoolchildren who were in the 3rd to 6th grades. Each student measured peak expiratory flow rate three times a day for 42 days. Particulate air concentrations were monitored every day, and the concentrations of iron, manganese, lead, zinc, and aluminum in the particles were measured. Glutathione S-transferase M1 and T1 genetic polymorphisms were determined using DNA extracted from participant buccal washings. We used a mixed linear regression model to estimate the association between peak expiratory flow rate and particulate air pollutants. RESULTS: We found significant reduction in the peak expiratory flow rate after the children’s exposure to particulate pollutants. The effect was shown most significantly 1 day after exposure to the ambient particles. Manganese and lead in the particles also reduced the peak expiratory flow rate. Genetic polymorphisms of glutathione S-transferase M1 and T1 did not significantly affect peak expiratory flow rate. CONCLUSIONS: This study demonstrated that particulate pollutants and metals such as manganese and lead in the particles are associated with a decrement of peak expiratory flow rate. These effects were robust even with consideration of genetic polymorphisms of glutathione S-transferase
    corecore