2,770 research outputs found

    Brain-Switches for Asynchronous Braināˆ’Computer Interfaces: A Systematic Review

    Get PDF
    A brainā€“computer interface (BCI) has been extensively studied to develop a novel communication system for disabled people using their brain activities. An asynchronous BCI system is more realistic and practical than a synchronous BCI system, in that, BCI commands can be generated whenever the user wants. However, the relatively low performance of an asynchronous BCI system is problematic because redundant BCI commands are required to correct false-positive operations. To significantly reduce the number of false-positive operations of an asynchronous BCI system, a two-step approach has been proposed using a brain-switch that first determines whether the user wants to use an asynchronous BCI system before the operation of the asynchronous BCI system. This study presents a systematic review of the state-of-the-art brain-switch techniques and future research directions. To this end, we reviewed brain-switch research articles published from 2000 to 2019 in terms of their (a) neuroimaging modality, (b) paradigm, (c) operation algorithm, and (d) performance

    Principal factors that determine the extension of detection range in molecular beacon aptamer/conjugated polyelectrolyte bioassays.

    Get PDF
    A strategy to extend the detection range of weakly-binding targets is reported that takes advantage of fluorescence resonance energy transfer (FRET)-based bioassays based on molecular beacon aptamers (MBAs) and cationic conjugated polyelectrolytes (CPEs). In comparison to other aptamer-target pairs, the aptamer-based adenosine triphosphate (ATP) detection assays are limited by the relatively weak binding between the two partners. In response, a series of MBAs were designed that have different stem stabilities while keeping the constant ATP-specific aptamer sequence in the loop part. The MBAs are labeled with a fluorophore and a quencher at both termini. In the absence of ATP, the hairpin MBAs can be opened by CPEs via a combination of electrostatic and hydrophobic interactions, showing a FRET-sensitized fluorophore signal. In the presence of ATP, the aptamer forms a G-quadruplex and the FRET signal decreases due to tighter contact between the fluorophore and quencher in the ATP/MBA/CPE triplex structure. The FRET-sensitized signal is inversely proportional to [ATP]. The extension of the detection range is determined by the competition between opening of the ATP/MBA G-quadruplex by CPEs and the composite influence by ATP/aptamer binding and the stem interactions. With increasing stem stability, the weak binding of ATP and its aptamer is successfully compensated to show the resistance to disruption by CPEs, resulting in a substantially broadened detection range (from millimolar up to nanomolar concentrations) and a remarkably improved limit of detection. From a general perspective, this strategy has the potential to be extended to other chemical- and biological-assays with low target binding affinity

    Real-time robustness evaluation of regression based myoelectric control against arm position change and donning/doffing

    Get PDF
    There are some practical factors, such as arm position change and donning/doffing, which prevent robust myoelectric control. The objective of this study is to precisely characterize the impacts of the two representative factors on myoelectric controllability in practical control situations, thereby providing useful references that can be potentially used to find better solutions for clinically reliable myoelectric control. To this end, a real-time target acquisition task was performed by fourteen subjects including one individual with congenital upper-limb deficiency, where the impacts of arm position change, donning/doffing and a combination of both factors on control performance was systematically evaluated. The changes in online performance were examined with seven different performance metrics to comprehensively evaluate various aspects of myoelectric controllability. As a result, arm position change significantly affects offline prediction accuracy, but not online control performance due to real-time feedback, thereby showing no significant correlation between offline and online performance. Donning/doffing was still problematic in online control conditions. It was further observed that no benefit was attained when using a control model trained with multiple position data in terms of arm position change, and the degree of electrode shift caused by donning/doffing was not severely associated with the degree of performance loss under practical conditions (around 1 cm electrode shift). Since this study is the first to concurrently investigate the impacts of arm position change and donning/doffing in practical myoelectric control situations, all findings of this study provide new insights into robust myoelectric control with respect to arm position change and donning/doffing.DFG, 325093850, Open Access Publizieren 2017 - 2018 / Technische UniversitƤt Berli

    The Devil is in the Points: Weakly Semi-Supervised Instance Segmentation via Point-Guided Mask Representation

    Full text link
    In this paper, we introduce a novel learning scheme named weakly semi-supervised instance segmentation (WSSIS) with point labels for budget-efficient and high-performance instance segmentation. Namely, we consider a dataset setting consisting of a few fully-labeled images and a lot of point-labeled images. Motivated by the main challenge of semi-supervised approaches mainly derives from the trade-off between false-negative and false-positive instance proposals, we propose a method for WSSIS that can effectively leverage the budget-friendly point labels as a powerful weak supervision source to resolve the challenge. Furthermore, to deal with the hard case where the amount of fully-labeled data is extremely limited, we propose a MaskRefineNet that refines noise in rough masks. We conduct extensive experiments on COCO and BDD100K datasets, and the proposed method achieves promising results comparable to those of the fully-supervised model, even with 50% of the fully labeled COCO data (38.8% vs. 39.7%). Moreover, when using as little as 5% of fully labeled COCO data, our method shows significantly superior performance over the state-of-the-art semi-supervised learning method (33.7% vs. 24.9%). The code is available at https://github.com/clovaai/PointWSSIS.Comment: CVPR 202

    CFTR Gating II: Effects of Nucleotide Binding on the Stability of Open States

    Get PDF
    Previously, we demonstrated that ADP inhibits cystic fibrosis transmembrane conductance regulator (CFTR) opening by competing with ATP for a binding site presumably in the COOH-terminal nucleotide binding domain (NBD2). We also found that the open time of the channel is shortened in the presence of ADP. To further study this effect of ADP on the open state, we have used two CFTR mutants (D1370N and E1371S); both have longer open times because of impaired ATP hydrolysis at NBD2. Single-channel kinetic analysis of Ī”R/D1370N-CFTR shows unequivocally that the open time of this mutant channel is decreased by ADP. Ī”R/E1371S-CFTR channels can be locked open by millimolar ATP with a time constant of āˆ¼100 s, estimated from current relaxation upon nucleotide removal. ADP induces a shorter locked-open state, suggesting that binding of ADP at a second site decreases the locked-open time. To test the functional consequence of the occupancy of this second nucleotide binding site, we changed the [ATP] and performed similar relaxation analysis for E1371S-CFTR channels. Two locked-open time constants can be discerned and the relative distribution of each component is altered by changing [ATP] so that increasing [ATP] shifts the relative distribution to the longer locked-open state. Single-channel kinetic analysis for Ī”R/E1371S-CFTR confirms an [ATP]-dependent shift of the distribution of two locked-open time constants. These results support the idea that occupancy of a second ATP binding site stabilizes the locked-open state. This binding site likely resides in the NH(2)-terminal nucleotide binding domain (NBD1) because introducing the K464A mutation, which decreases ATP binding affinity at NBD1, into E1371S-CFTR shortens the relaxation time constant. These results suggest that the binding energy of nucleotide at NBD1 contributes to the overall energetics of the open channel conformation

    On Monotonic Aggregation for Open-domain QA

    Full text link
    Question answering (QA) is a critical task for speech-based retrieval from knowledge sources, by sifting only the answers without requiring to read supporting documents. Specifically, open-domain QA aims to answer user questions on unrestricted knowledge sources. Ideally, adding a source should not decrease the accuracy, but we find this property (denoted as "monotonicity") does not hold for current state-of-the-art methods. We identify the cause, and based on that we propose Judge-Specialist framework. Our framework consists of (1) specialist retrievers/readers to cover individual sources, and (2) judge, a dedicated language model to select the final answer. Our experiments show that our framework not only ensures monotonicity, but also outperforms state-of-the-art multi-source QA methods on Natural Questions. Additionally, we show that our models robustly preserve the monotonicity against noise from speech recognition. We publicly release our code and setting.Comment: INTERSPEECH 2023 Camera Read

    Overexpression of Arabidopsis thaliana brassinosteroid-related acyltransferase 1 gene induces brassinosteroid-deficient phenotypes in creeping bentgrass

    Get PDF
    Brassinosteroids (BRs) are naturally occurring steroidal hormones that play diverse roles in various processes during plant growth and development. Thus, genetic manipulation of endogenous BR levels might offer a way of improving the agronomic traits of crops, including plant architecture and stress tolerance. In this study, we produced transgenic creeping bentgrass (Agrostis stolonifera L.) overexpressing a BR-inactivating enzyme, Arabidopsis thaliana BR-related acyltransferase 1 (AtBAT1), which is known to catalyze the conversion of BR intermediates to inactive acylated conjugates. After putative transgenic plants were selected using herbicide resistance assay, genomic integration of the AtBAT1 gene was confirmed by genomic PCR and Southern blot analysis, and transgene expression was validated by northern blot analysis. The transgenic creeping bentgrass plants exhibited BR-deficient phenotypes, including reduced plant height with shortened internodes (i.e., semi-dwarf), reduced leaf growth rates with short, wide, and thick architecture, high chlorophyll contents, decreased numbers of vascular bundles, and large lamina joint bending angles (i.e., erect leaves). Subsequent analyses showed that the transgenic plants had significantly reduced amounts of endogenous BR intermediates, including typhasterol, 6-deoxocastasterone, and castasterone. Moreover, the AtBAT1 transgenic plants displayed drought tolerance as well as delayed senescence. Therefore, the results of the present study demonstrate that overexpression of an Arabidopsis BR-inactivating enzyme can reduce the endogenous levels of BRs in creeping bentgrass resulting in BR-deficient phenotypes, indicating that the AtBAT1 gene from a dicot plant is also functional in the monocot crop.111Ysciescopu

    Improvement of Information Transfer Rates Using a Hybrid EEG-NIRS Brain-Computer Interface with a Short Trial Length: Offline and Pseudo-Online Analyses

    Get PDF
    Electroencephalography (EEG) and near-infrared spectroscopy (NIRS) are non-invasive neuroimaging methods that record the electrical and metabolic activity of the brain, respectively. Hybrid EEG-NIRS brain-computer interfaces (hBCIs) that use complementary EEG and NIRS information to enhance BCI performance have recently emerged to overcome the limitations of existing unimodal BCIs, such as vulnerability to motion artifacts for EEG-BCI or low temporal resolution for NIRS-BCI. However, with respect to NIRS-BCI, in order to fully induce a task-related brain activation, a relatively long trial length (ā‰„10 s) is selected owing to the inherent hemodynamic delay that lowers the information transfer rate (ITR; bits/min). To alleviate the ITR degradation, we propose a more practical hBCI operated by intuitive mental tasks, such as mental arithmetic (MA) and word chain (WC) tasks, performed within a short trial length (5 s). In addition, the suitability of the WC as a BCI task was assessed, which has so far rarely been used in the BCI field. In this experiment, EEG and NIRS data were simultaneously recorded while participants performed MA and WC tasks without preliminary training and remained relaxed (baseline; BL). Each task was performed for 5 s, which was a shorter time than previous hBCI studies. Subsequently, a classification was performed to discriminate MA-related or WC-related brain activations from BL-related activations. By using hBCI in the offline/pseudo-online analyses, average classification accuracies of 90.0 Ā± 7.1/85.5 Ā± 8.1% and 85.8 Ā± 8.6/79.5 Ā± 13.4% for MA vs. BL and WC vs. BL, respectively, were achieved. These were significantly higher than those of the unimodal EEG- or NIRS-BCI in most cases. Given the short trial length and improved classification accuracy, the average ITRs were improved by more than 96.6% for MA vs. BL and 87.1% for WC vs. BL, respectively, compared to those reported in previous studies. The suitability of implementing a more practical hBCI based on intuitive mental tasks without preliminary training and with a shorter trial length was validated when compared to previous studies

    Accelerated identification of equilibrium structures of multicomponent inorganic crystals using machine learning potentials

    Full text link
    The discovery of new multicomponent inorganic compounds can provide direct solutions to many scientific and engineering challenges, yet the vast size of the uncharted material space dwarfs current synthesis throughput. While the computational crystal structure prediction is expected to mitigate this frustration, the NP-hardness and steep costs of density functional theory (DFT) calculations prohibit material exploration at scale. Herein, we introduce SPINNER, a highly efficient and reliable structure-prediction framework based on exhaustive random searches and evolutionary algorithms, which is completely free from empiricism. Empowered by accurate neural network potentials, the program can navigate the configuration space faster than DFT by more than 102^{2}-fold. In blind tests on 60 ternary compositions diversely selected from the experimental database, SPINNER successfully identifies experimental (or theoretically more stable) phases for ~80% of materials within 5000 generations, entailing up to half a million structure evaluations for each composition. When benchmarked against previous data mining or DFT-based evolutionary predictions, SPINNER identifies more stable phases in the majority of cases. By developing a reliable and fast structure-prediction framework, this work opens the door to large-scale, unbounded computational exploration of undiscovered inorganic crystals.Comment: 3 figure

    TAZ Suppresses NFAT5 Activity through Tyrosine Phosphorylation

    Get PDF
    Transcriptional coactivator with PDZ-binding motif (TAZ) physically interacts with a variety of transcription factors and modulates their activities involved in cell proliferation and mesenchymal stem cell differentiation. TAZ is highly expressed in the kidney, and a deficiency of this protein results in multiple renal cysts and urinary concentration defects; however, the molecular functions of TAZ in renal cells remain largely unknown. In this study, we examined the effects of osmotic stress on TAZ expression and activity in renal cells. We found that hyperosmotic stress selectively increased protein phosphorylation at tyrosine 316 of TAZ and that this was enhanced by c-Abl activation in response to hyperosmotic stress. Interestingly, phosphorylated TAZ physically interacted with nuclear factor of activated T cells 5 (NFAT5), a major osmoregulatory transcription factor, and subsequently suppressed DNA binding and transcriptional activity of NFAT5. Furthermore, TAZ deficiency elicited an increase in NFAT5 activity in vitro and in vivo, which then reverted to basal levels following restoration of wild-type TAZ but not mutant TAZ (Y316F). Collectively, the data suggest that TAZ modulates cellular responses to hyperosmotic stress through fine-tuning of NFAT5 activity via tyrosine phosphorylation.open3
    • ā€¦
    corecore