476 research outputs found

    A simple and accurate SNP scoring strategy based on typeIIS restriction endonuclease cleavage and matrix-assisted laser desorption/ionization mass spectrometry

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We describe the development of a novel matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF)-based single nucleotide polymorphism (SNP) scoring strategy, termed Restriction Fragment Mass Polymorphism (RFMP) that is suitable for genotyping variations in a simple, accurate, and high-throughput manner. The assay is based on polymerase chain reaction (PCR) amplification and mass measurement of oligonucleotides containing a polymorphic base, to which a typeIIS restriction endonuclease recognition was introduced by PCR amplification. Enzymatic cleavage of the products leads to excision of oligonucleotide fragments representing base variation of the polymorphic site whose masses were determined by MALDI-TOF MS.</p> <p>Results</p> <p>The assay represents an improvement over previous methods because it relies on the direct mass determination of PCR products rather than on an indirect analysis, where a base-extended or fluorescent report tag is interpreted. The RFMP strategy is simple and straightforward, requiring one restriction digestion reaction following target amplification in a single vessel. With this technology, genotypes are generated with a high call rate (99.6%) and high accuracy (99.8%) as determined by independent sequencing.</p> <p>Conclusion</p> <p>The simplicity, accuracy and amenability to high-throughput screening analysis should make the RFMP assay suitable for large-scale genotype association study as well as clinical genotyping in laboratories.</p

    Titanium dioxide induces apoptotic cell death through reactive oxygen species-mediated Fas upregulation and Bax activation

    Get PDF
    Background: Titanium dioxide (TiO2) has been widely used in many areas, including biomedicine, cosmetics, and environmental engineering. Recently, it has become evident that some TiO2 particles have a considerable cytotoxic effect in normal human cells. However, the molecular basis for the cytotoxicity of TiO2 has yet to be defined.Methods and results: In this study, we demonstrated that combined treatment with TiO2 nanoparticles sized less than 100 nm and ultraviolet A irradiation induces apoptotic cell death through reactive oxygen species-dependent upregulation of Fas and conformational activation of Bax in normal human cells. Treatment with P25 TiO2 nanoparticles with a hydrodynamic size distribution centered around 70 nm (TiO2P25-70) together with ultraviolet A irradiation-induced caspase-dependent apoptotic cell death, accompanied by transcriptional upregulation of the death receptor, Fas, and conformational activation of Bax. In line with these results, knockdown of either Fas or Bax with specific siRNA significantly inhibited TiO2-induced apoptotic cell death. Moreover, inhibition of reactive oxygen species with an antioxidant, N-acetyl-L-cysteine, clearly suppressed upregulation of Fas, conformational activation of Bax, and subsequent apoptotic cell death in response to combination treatment using TiO2P25-70 and ultraviolet A irradiation.Conclusion: These results indicate that sub-100 nm sized TiO2 treatment under ultraviolet A irradiation induces apoptotic cell death through reactive oxygen species-mediated upregulation of the death receptor, Fas, and activation of the preapoptotic protein, Bax. Elucidating the molecular mechanisms by which nanosized particles induce activation of cell death signaling pathways would be critical for the development of prevention strategies to minimize the cytotoxicity of nanomaterials.This work was supported by the Korea Ministry of Environment and The Eco-Technopia 21 Project (091-091-081)

    Effectiveness of the Hugging Balloon Technique in Coronary Angioplasty for a Heavy, Encircling, Calcified Coronary Lesion

    Get PDF
    We report our experience in coronary angioplasty and intravascular ultrasonography (IVUS) on a heavy, encircling, calcified lesion that was not dilated with the use of a cutting balloon and a non-compliant balloon. The angioplasty was successfully performed with a simple and inexpensive hugging balloon technique

    Identification of a Novel Mutation of CFTR Gene in a Korean Patient with Cystic Fibrosis

    Get PDF
    Cystic fibrosis (CF) is the most common lethal autosomal recessive disease in Caucasians, but rare in Asians. The mutations of cystic fibrosis transmembrane conductance regulator (CFTR) gene are responsible for CF. To date, less than 5 cases of CF have been reported and a few of them diagnosed based on the genotype of the CFTR gene in Korea. We encountered a 4-month-old Korean infant with CF and the diagnosis was confirmed by CFTR gene mutation analysis. The patient underwent surgical operation, due to meconium ileus at birth. He suffered by recurrent respiratory infections, failure to thrive, fatty liver with hepatomegaly, and cholestasis. The mutations of the CFTR gene were identified in the patient and his parents. The patient was a compound heterozygote with a nonsense mutation of c.263T>G, resulting in an amino acid change of p.Leu88X in exon 3. It was previously described in a Korean patient with CF. The other is a novel mutation; c.2089-2090insA mutation (p.Arg697LysfsX33) in exon 13. The mutation c.263T>G was inherited from his father, and the c.2089-2090insA mutation from his mother. Respiratory infection was recovered by supportive care, and cholestasis was improved slowly with sufficient feeding and supplementation of pancreatic exocrine enzymes. He is 19-month old now and shows catch-up growth. We report a novel CFTR mutation in a Korean infant with CF
    corecore