22 research outputs found

    Quantitative analysis of the effect of tubulin isotype expression on sensitivity of cancer cell lines to a set of novel colchicine derivatives

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A maximum entropy approach is proposed to predict the cytotoxic effects of a panel of colchicine derivatives in several human cancer cell lines. Data was obtained from cytotoxicity assays performed with 21 drug molecules from the same family of colchicine compounds and correlate these results with independent tubulin isoform expression measurements for several cancer cell lines. The maximum entropy method is then used in conjunction with computed relative binding energy values for each of the drug molecules against tubulin isotypes to which these compounds bind with different affinities.</p> <p>Results</p> <p>We have found by using our analysis that <it>αβ</it>I and <it>αβ</it>III tubulin isoforms are the most important isoforms in establishing predictive response of cancer cell sensitivity to colchicine derivatives. However, since <it>αβ</it>I tubulin is widely distributed in the human body, targeting it would lead to severe adverse side effects. Consequently, we have identified tubulin isotype <it>αβ</it>III as the most important molecular target for inhibition of microtubule polymerization and hence cancer cell cytotoxicity. Tubulin isotypes <it>αβ</it>I and <it>αβ</it>II are concluded to be secondary targets.</p> <p>Conclusions</p> <p>The benefit of being able to correlate expression levels of specific tubulin isotypes and the resultant cell death effect is that it will enable us to better understand the origin of drug resistance and hence design optimal structures for the elimination of cancer cells. The conclusion of the study described herein identifies tubulin isotype <it>αβ</it>III as a target for optimized chemotherapy drug design.</p

    Discovery and Characterization of the Laulimalide-Microtubule Binding Mode by Mass Shift Perturbation Mapping

    Get PDF
    SummaryConventional approaches to site mapping have so far failed to identify the laulimalide binding site on microtubules. Using mass shift perturbation analysis and data-directed docking, we demonstrate that laulimalide binds to the exterior of the microtubule on β-tubulin, in a region previously unknown to support ligand binding and well removed from the paclitaxel site. Shift maps for docetaxel and laulimalide are otherwise identical, indicating a common state of microtubule stability induced by occupancy of the distinct sites. The preferred binding mode highlights the penetration of the laulimalide side chain into a deep, narrow cavity through a unique conformation not strongly populated in solution, akin to a “striking cobra.” This mode supports the development of a pharmacophore model and reveals the importance of the C1–C15 axis in the macrocycle

    A Unique Mode of Microtubule Stabilization Induced by Peloruside A

    No full text
    Microtubules are a significant therapeutic target for the treatment of cancer, where suppression of microtubule dynamicity by drugs such as paclitaxel forms the basis of clinical efficacy. Peloruside A, a macrolide isolated from New Zealand marine sponge Mycale hentscheli, is a microtubule stabilizing agent that synergizes with taxoid drugs through a unique site, and is an attractive lead compound in the development of combination therapies. We report here unique allosteric properties of microtubule stabilization via peloruside A, and present a structural model of the peloruside binding site. Using a strategy involving comparative hydrogen-deuterium exchange mass spectrometry (HDX-MS) of different microtubule stabilizing agents, we suggest that taxoid-site ligands epothilone A and docetaxel stabilize microtubules primarily through improved longitudinal interactions centered on the interdimer interface, with no observable contributions from lateral interactions between protofilaments. The mode by which peloruside A achieves microtubule stabilization also involves the interdimer interface, but includes contributions from the α/β-tubulin intradimer interface and protofilament contacts, both in the form of destabilizations. Using data-directed molecular docking simulations, we propose that peloruside A binds within a pocket on the exterior of β-tubulin at a previously unknown ligand site, rather than on α-tubulin as suggested in earlier studies.YesAlberta Cancer Board, the Alberta Heritage Foundation for Medical Research, the Canadian Institutes of Health Research and intramural funds from the National Institute of Child Health and Human Development, NIH, USA

    A Computational Model for Overcoming Drug Resistance Using Selective Dual-Inhibitors for Aurora Kinase A and Its T217D Variant

    No full text
    The human Aurora kinase-A (AK-A) is an essential mitotic regulator that is frequently overexpressed in several cancers. The recent development of several novel AK-A inhibitors has been driven by the well-established association of this target with cancer development and progression. However, resistance and cross-reactivity with similar kinases demands an improvement in our understanding of key molecular interactions between the Aurora kinase-A substrate binding pocket and potential inhibitors. Here, we describe the implementation of state-of-the-art virtual screening techniques to discover a novel set of Aurora kinase-A ligands that are predicted to strongly bind not only to the wild type protein, but also to the T217D mutation that exhibits resistance to existing inhibitors. Furthermore, a subset of these computationally screened ligands was shown to be more selective toward the mutant variant over the wild type protein. The description of these selective subsets of ligands provides a unique pharmacological tool for the design of new drug regimens aimed at overcoming both kinase cross-reactivity and drug resistance associated with the Aurora kinase-A T217D mutation
    corecore