458 research outputs found

    Calmodulin-like proteins localized to the conoid regulate motility and cell invasion by Toxoplasma gondii

    Get PDF
    Toxoplasma gondii contains an expanded number of calmodulin (CaM)-like proteins whose functions are poorly understood. Using a combination of CRISPR/Cas9-mediated gene editing and a plant-like auxin-induced degron (AID) system, we examined the roles of three apically localized CaMs. CaM1 and CaM2 were individually dispensable, but loss of both resulted in a synthetic lethal phenotype. CaM3 was refractory to deletion, suggesting it is essential. Consistent with this prediction auxin-induced degradation of CaM3 blocked growth. Phenotypic analysis revealed that all three CaMs contribute to parasite motility, invasion, and egress from host cells, and that they act downstream of microneme and rhoptry secretion. Super-resolution microscopy localized all three CaMs to the conoid where they overlap with myosin H (MyoH), a motor protein that is required for invasion. Biotinylation using BirA fusions with the CaMs labeled a number of apical proteins including MyoH and its light chain MLC7, suggesting they may interact. Consistent with this hypothesis, disruption of MyoH led to degradation of CaM3, or redistribution of CaM1 and CaM2. Collectively, our findings suggest these CaMs may interact with MyoH to control motility and cell invasion

    Biomechanical simulations of the scoliotic deformation process in the pinealectomized chicken: a preliminary study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The basic mechanisms whereby mechanical factors modulate the metabolism of the growing spine remain poorly understood, especially the role of growth adaptation in spinal disorders like in adolescent idiopathic scoliosis (AIS). This paper presents a finite element model (FEM) that was developed to simulate early stages of scoliotic deformities progression using a pinealectomized chicken as animal model.</p> <p>Methods</p> <p>The FEM includes basic growth and growth modulation created by the muscle force imbalance. The experimental data were used to adapt a FEM previously developed to simulate the scoliosis deformation process in human. The simulations of the spine deformation process are compared with the results of an experimental study including a group of pinealectomized chickens.</p> <p>Results</p> <p>The comparison of the simulation results of the spine deformation process (Cobb angle of 37°) is in agreement with experimental scoliotic deformities of two representative cases (Cobb angle of 41° and 30°). For the vertebral wedging, a good agreement is also observed between the calculated (28°) and the observed (25° – 30°) values.</p> <p>Conclusion</p> <p>The proposed biomechanical model presents a novel approach to realistically simulate the scoliotic deformation process in pinealectomized chickens and investigate different parameters influencing the progression of scoliosis.</p

    The structures of a naturally empty cowpea mosaic virus particle and its genome-containing counterpart by cryo-electron microscopy

    Get PDF
    Cowpea mosaic virus (CPMV) is a picorna-like plant virus. As well as an intrinsic interest in CPMV as a plant pathogen, CPMV is of major interest in biotechnology applications such as nanotechnology. Here, we report high resolution cryo electron microscopy (cryo-EM) maps of wild type CPMV containing RNA-2, and of naturally-formed empty CPMV capsids. The resolution of these structures is sufficient to visualise large amino acids. We have refined an atomic model for each map and identified an essential amino acid involved in genome encapsidation. This work has furthered our knowledge of Picornavirales genome encapsidation and will assist further work in the development of CPMV as a biotechnological tool

    Dynasore, a Dynamin Inhibitor, Inhibits Trypanosoma cruzi Entry into Peritoneal Macrophages

    Get PDF
    BACKGROUND: Trypanosoma cruzi is an intracellular parasite that, like some other intracellular pathogens, targets specific proteins of the host cell vesicular transport machinery, leading to a modulation of host cell processes that results in the generation of unique phagosomes. In mammalian cells, several molecules have been identified that selectively regulate the formation of endocytic transport vesicles and the fusion of such vesicles with appropriate acceptor membranes. Among these, the GTPase dynamin plays an important role in clathrin-mediated endocytosis, and it was recently found that dynamin can participate in a phagocytic process. METHODOLOGY/PRINCIPAL FINDINGS: We used a compound called dynasore that has the ability to block the GTPase activity of dynamin. Dynasore acts as a potent inhibitor of endocytic pathways by blocking coated vesicle formation within seconds of its addition. Here, we investigated whether dynamin is involved in the entry process of T. cruzi in phagocytic and non-phagocytic cells by using dynasore. In this aim, peritoneal macrophages and LLC-MK2 cells were treated with increasing concentrations of dynasore before interaction with trypomastigotes, amastigotes or epimastigotes. We observed that, in both cell lines, the parasite internalization was drastically diminished (by greater than 90% in LLC-MK2 cells and 70% in peritoneal macrophages) when we used 100 microM dynasore. The T. cruzi adhesion index, however, was unaffected in either cell line. Analyzing these interactions by scanning electron microscopy and comparing peritoneal macrophages to LLC-MK2 cells revealed differences in the stage at which cell entry was blocked. In LLC-MK2 cells, this blockade is observed earlier than it is in peritoneal macrophages. In LLC-MK2 cells, the parasites were only associated with cellular microvilli, whereas in peritoneal macrophages, trypomastigotes were not completely engulfed by a host cell plasma membrane. CONCLUSIONS/SIGNIFICANCE: Taken together our results demonstrate that dynamin is an essential molecule necessary for cell invasion and specifically parasitophorous vacuole formation by host cells during interaction with Trypanosoma cruzi

    TgICMAP1 Is a Novel Microtubule Binding Protein in Toxoplasma gondii

    Get PDF
    The microtubule cytoskeleton provides essential structural support for all eukaryotic cells and can be assembled into various higher order structures that perform drastically different functions. Understanding how microtubule-containing assemblies are built in a spatially and temporally controlled manner is therefore fundamental to understanding cell physiology. Toxoplasma gondii, a protozoan parasite, contains at least five distinct tubulin-containing structures, the spindle pole, centrioles, cortical microtubules, the conoid, and the intra-conoid microtubules. How these five structurally and functionally distinct sets of tubulin containing structures are constructed and maintained in the same cell is an intriguing problem. Previously, we performed a proteomic analysis of the T. gondii apical complex, a cytoskeletal complex located at the apical end of the parasite that is composed of the conoid, three ring-like structures, and the two short intra-conoid microtubules. Here we report the characterization of one of the proteins identified in that analysis, TgICMAP1. We show that TgICMAP1 is a novel microtubule binding protein that can directly bind to microtubules in vitro and stabilizes microtubules when ectopically expressed in mammalian cells. Interestingly, in T. gondii, TgICMAP1 preferentially binds to the intra-conoid microtubules, providing us the first molecular tool to investigate the intra-conoid microtubule assembly process during daughter construction

    Increased Mobility of Metal Oxide Nanoparticles Due to Photo and Thermal Induced Disagglomeration

    Get PDF
    Significant advances have been made on our understanding of the fate and transport of engineered nanomaterials. One unexplored aspect of nanoparticle aggregation is how environmental stimuli such as light exposure and temperature variations affect the mobility of engineered nanoparticles. In this study, TiO2, ZnO, and CeO2 were chosen as model materials for investigating the mobility of nanoparticles under three external stimuli: heat, light and sonication. Sunlight and high power sonication were able to partially disagglomerate metal oxide clusters, but primary particles bonded by solid state necks were left intact. A cycle of temperature increase from 25°C to 65°C and then decrease back was found to disagglomerate the compact clusters in the heating phase and reagglomerate them as more open fractal structures during the cooling phase. A fractal model summing the pair-wise DLVO interactions between primary particles within two fractal agglomerates predicts weak attractions on the order of a few kT. Our study shows that common environmental stimuli such as light exposure or temperature variation can disagglomerate nanoparticle clusters and enhance their mobility in open waters. This phenomenon warrants attention since it is likely that metal oxide nanoparticles will experience these natural stimuli during their transport in the environment

    Biomechanical analysis and modeling of different vertebral growth patterns in adolescent idiopathic scoliosis and healthy subjects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The etiology of AIS remains unclear, thus various hypotheses concerning its pathomechanism have been proposed. To date, biomechanical modeling has not been used to thoroughly study the influence of the abnormal growth profile (i.e., the growth rate of the vertebral body during the growth period) on the pathomechanism of curve progression in AIS. This study investigated the hypothesis that AIS progression is associated with the abnormal growth profiles of the anterior column of the spine.</p> <p>Methods</p> <p>A finite element model of the spinal column including growth dynamics was utilized. The initial geometric models were constructed from the bi-planar radiographs of a normal subject. Based on this model, five other geometric models were generated to emulate different coronal and sagittal curves. The detailed modeling integrated vertebral body growth plates and growth modulation spinal biomechanics. Ten years of spinal growth was simulated using AIS and normal growth profiles. Sequential measures of spinal alignments were compared.</p> <p>Results</p> <p>(1) Given the initial lateral deformity, the AIS growth profile induced a significant Cobb angle increase, which was roughly between three to five times larger compared to measures utilizing a normal growth profile. (2) Lateral deformities were absent in the models containing no initial coronal curvature. (3) The presence of a smaller kyphosis did not produce an increase lateral deformity on its own. (4) Significant reduction of the kyphosis was found in simulation results of AIS but not when using the growth profile of normal subjects.</p> <p>Conclusion</p> <p>Results from this analysis suggest that accelerated growth profiles may encourage supplementary scoliotic progression and, thus, may pose as a progressive risk factor.</p

    Enhancing Mental and Physical Health of Women through Engagement and Retention (EMPOWER): a protocol for a program of research

    Get PDF
    Abstract Background The Enhancing Mental and Physical health of Women through Engagement and Retention or EMPOWER program represents a partnership with the US Department of Veterans Health Administration (VA) Health Service Research and Development investigators and the VA Office of Women’s Health, National Center for Disease Prevention and Health Promotion, Primary Care-Mental Health Integration Program Office, Women’s Mental Health Services, and the Office of Patient Centered Care and Cultural Transformation. EMPOWER includes three projects designed to improve women Veterans’ engagement and retention in evidence-based care for high-priority health conditions, i.e., prediabetes, cardiovascular, and mental health. Methods/Design The three proposed projects will be conducted in VA primary care clinics that serve women Veterans including general primary care and women’s health clinics. The first project is a 1-year quality improvement project targeting diabetes prevention. Two multi-site research implementation studies will focus on cardiovascular risk prevention and collaborative care to address women Veterans’ mental health treatment needs respectively. All projects will use the evidence-based Replicating Effective Programs (REP) implementation strategy, enhanced with multi-stakeholder engagement and complexity theory. Mixed methods implementation evaluations will focus on investigating primary implementation outcomes of adoption, acceptability, feasibility, and reach. Program-wide organizational-, provider-, and patient-level measures and tools will be utilized to enhance synergy, productivity, and impact. Both implementation research studies will use a non-randomized stepped wedge design. Discussion EMPOWER represents a coherent program of women’s health implementation research and quality improvement that utilizes cross-project implementation strategies and evaluation methodology. The EMPOWER Quality Enhancement Research Initiative (QUERI) will constitute a major milestone for realizing women Veterans’ engagement and empowerment in the VA system. EMPOWER QUERI will be conducted in close partnership with key VA operations partners, such as the VA Office of Women’s Health, to disseminate and spread the programs nationally. Trial registration The two implementation research studies described in this protocol have been registered as required: Facilitating Cardiovascular Risk Screening and Risk Reduction in Women Veterans: Trial registration NCT02991534 , registered 9 December 2016. Implementation of Tailored Collaborative Care for Women Veterans: Trial registration NCT02950961 , registered 21 October 2016

    Trypanosome Lytic Factor, an Antimicrobial High-Density Lipoprotein, Ameliorates Leishmania Infection

    Get PDF
    Innate immunity is the first line of defense against invading microorganisms. Trypanosome Lytic Factor (TLF) is a minor sub-fraction of human high-density lipoprotein that provides innate immunity by completely protecting humans from infection by most species of African trypanosomes, which belong to the Kinetoplastida order. Herein, we demonstrate the broader protective effects of human TLF, which inhibits intracellular infection by Leishmania, a kinetoplastid that replicates in phagolysosomes of macrophages. We show that TLF accumulates within the parasitophorous vacuole of macrophages in vitro and reduces the number of Leishmania metacyclic promastigotes, but not amastigotes. We do not detect any activation of the macrophages by TLF in the presence or absence of Leishmania, and therefore propose that TLF directly damages the parasite in the acidic parasitophorous vacuole. To investigate the physiological relevance of this observation, we have reconstituted lytic activity in vivo by generating mice that express the two main protein components of TLFs: human apolipoprotein L-I and haptoglobin-related protein. Both proteins are expressed in mice at levels equivalent to those found in humans and circulate within high-density lipoproteins. We find that TLF mice can ameliorate an infection with Leishmania by significantly reducing the pathogen burden. In contrast, TLF mice were not protected against infection by the kinetoplastid Trypanosoma cruzi, which infects many cell types and transiently passes through a phagolysosome. We conclude that TLF not only determines species specificity for African trypanosomes, but can also ameliorate an infection with Leishmania, while having no effect on T. cruzi. We propose that TLFs are a component of the innate immune system that can limit infections by their ability to selectively damage pathogens in phagolysosomes within the reticuloendothelial system
    corecore