121 research outputs found

    Biochemical characterisation of a PL24 ulvan lyase from seaweed-associated Vibrio sp. FNV38

    Get PDF
    Ulvan is a green macroalgal cell wall polysaccharide that has tremendous potential for valorisation due to its unique composition of sulphated rhamnose, glucuronic acid, iduronic acid and xylose. Several potential applications such as production of biofuels, bioplastics and other value-added products necessitate the breakdown of the polysaccharide to oligomers or monomers. Research on ulvan saccharifying enzymes has been continually increasing over the last decade, with the increasing focus on valorisation of seaweed biomass for a biobased economy. Lyases are the first of several enzymes that are involved in saccharifying the polysaccharide and several ulvan lyases have been structurally and biochemically characterised to enable their effective use in the valorisation processes. This study investigates the whole genome of Vibrio sp. FNV38, an ulvan metabolising organism and biochemical characteristics of a PL24 ulvan lyase that it possesses. The genome of Vibrio sp. FNV38 has a diverse CAZy profile with several genes involved in the metabolism of ulvan, cellulose, agar, and alginate. The enzyme exhibits optimal activity at pH 8.5 in 100 mM Tris–HCl buffer and 30 °C. However, its thermal stability is poor with significant loss of activity after 2 h of incubation at temperatures above 25 °C. Breakdown product analysis reveals that the enzyme depolymerised the polysaccharide predominantly to disaccharides and tetrasaccharides.</p

    Beehives possess their own distinct microbiomes

    Get PDF
    Abstract Background Honeybees use plant material to manufacture their own food. These insect pollinators visit flowers repeatedly to collect nectar and pollen, which are shared with other hive bees to produce honey and beebread. While producing these products, beehives accumulate a considerable number of microbes, including bacteria that derive from plants and different parts of the honeybees’ body. Whether bacteria form similar communities amongst beehives, even if located in close proximity, is an ecologically important question that has been addressed in this study. Specific ecological factors such as the surrounding environment and the beekeeping methods used can shape the microbiome of the beehive as a whole, and eventually influence the health of the honeybees and their ecosystem. Results We conducted 16S rRNA meta-taxonomic analysis on honey and beebread samples that were collected from 15 apiaries in the southeast of England to quantify the bacteria associated with different beehives. We observed that honeybee products carry a significant variety of bacterial groups that comprise bee commensals, environmental bacteria and symbionts and pathogens of plants and animals. Remarkably, this bacterial diversity differs not only amongst apiaries, but also between the beehives of the same apiary. In particular, the levels of the bee commensals varied significantly, and their fluctuations correlated with the presence of different environmental bacteria and various apiculture practices. Conclusions Our results show that every hive possesses their own distinct microbiome and that this very defined fingerprint is affected by multiple factors such as the nectar and pollen gathered from local plants, the management of the apiaries and the bacterial communities living around the beehives. Based on our findings, we suggest that the microbiome of beehives could be used as a valuable biosensor informing of the health of the honeybees and their surrounding environment

    Identification and Characterization of Three Novel Lipases Belonging to Families II and V from Anaerovibrio lipolyticus 5ST

    Get PDF
    Following the isolation, cultivation and characterization of the rumen bacterium Anaerovibrio lipolyticus in the 1960s, it has been recognized as one of the major species involved in lipid hydrolysis in ruminant animals. However, there has been limited characterization of the lipases from the bacterium, despite the importance of understanding lipolysis and its impact on subsequent biohydrogenation of polyunsaturated fatty acids by rumen microbes. This study describes the draft genome of Anaerovibrio lipolytica 5ST, and the characterization of three lipolytic genes and their translated protein. The uncompleted draft genome was 2.83 Mbp and comprised of 2,673 coding sequences with a G+C content of 43.3%. Three putative lipase genes, alipA, alipB and alipC, encoding 492-, 438- and 248- amino acid peptides respectively, were identified using RAST. Phylogenetic analysis indicated that alipA and alipB clustered with the GDSL/SGNH family II, and alipC clustered with lipolytic enzymes from family V. Subsequent expression and purification of the enzymes showed that they were thermally unstable and had higher activities at neutral to alkaline pH. Substrate specificity assays indicated that the enzymes had higher hydrolytic activity against caprylate (C8), laurate (C12) and myristate (C14)

    Freeze‑dried Nannochloropsis oceanica biomass protects eicosapentaenoic acid (EPA) from metabolization in the rumen of lambs

    Get PDF
    Research Areas: Science & Technology ; Other TopicsEicosapentaenoic acid (EPA) from freeze-dried biomass of Nannochloropsis oceanica microalgae resists ruminal biohydrogenation in vitro, but in vivo demonstration is needed. Therefore, the present study was designed to test the rumen protective effects of N. oceanica in lambs. Twenty-eight lambs were assigned to one of four diets: Control (C); and C diets supplemented with: 1.2% Nannochloropsis sp. oil (O); 12.3% spray-dried N. oceanica (SD); or 9.2% N. oceanica (FD), to achieve 3 g EPA /kg dry matter. Lambs were slaughtered after 3 weeks and digestive contents and ruminal wall samples were collected. EPA concentration in the rumen of lambs fed FD was about 50% higher than lambs fed SD or O diets. Nevertheless, the high levels of EPA in cecum and faeces of animals fed N. oceanica biomass, independently of the drying method, suggests that EPA was not completely released and absorbed in the small intestine. Furthermore, supplementation with EPA sources also affected the ruminal biohydrogenation of C18 fatty acids, mitigating the shift from the t10 biohydrogenation pathways to the t11 pathways compared to the Control diet. Overall, our results demonstrate that FD N. oceanica biomass is a natural rumen-protected source of EPA to ruminants.info:eu-repo/semantics/publishedVersio

    Isolation and characterization of novel lipases/esterases from a bovine rumen metagenome

    Get PDF
    Improving the health beneficial fatty acid content of meat and milk is a major challenge requiring an increased understanding of rumen lipid metabolism. In this study, we isolated and characterized rumen bacterial lipases/esterases using functional metagenomics. Metagenomic libraries were constructed from DNA extracted from strained rumen fluid (SRF), solid-attached bacteria (SAB) and liquid-associated rumen bacteria (LAB), ligated into a fosmid vector and subsequently transformed into an Escherichia coli host. Fosmid libraries consisted of 7,744; 8,448; and 7,680 clones with an average insert size of 30 to 35 kbp for SRF, SAB and LAB, respectively. Transformants were screened on spirit blue agar plates containing tributyrin for lipase/esterase activity. Five SAB and four LAB clones exhibited lipolytic activity, and no positive clones were found in the SRF library. Fosmids from positive clones were pyrosequenced and twelve putative lipase/esterase genes and two phospholipase genes retrieved. Although the derived proteins clustered into diverse esterase and lipase families, a degree of novelty was seen, with homology ranging from 40 to 78 % following BlastP searches. Isolated lipases/esterases exhibited activity against mostly short- to medium-chain substrates across a range of temperatures and pH. The function of these novel enzymes recovered in ruminal metabolism needs further investigation, alongside their potential industrial uses. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00253-014-6355-6) contains supplementary material, which is available to authorized users

    Pre-Weaned Calf Rearing on Northern Irish Dairy Farms—Part 2: The Impact of Hygiene Practice on Bacterial Levels in Dairy Calf Rearing Environments

    Get PDF
    Publication history: Accepted - 18 March 2023; Published - 21 March 2023.Pre-weaned dairy calves are very susceptible to disease in the first months of life due to having a naïve immune system and because of the numerous physiological stressors they face. Hygiene management is a key element in minimizing enteric disease risk in calves by reducing their exposure to pathogens. Samples of milk, concentrate feed and drinking water, boot swabs of bedding and swabs of feed equipment were collected from 66 dairy farms as part of a survey of calf rearing practice and housing design. All the samples were cultured to determine total viable counts (TVC), total coliforms (TCC) and Escherichia coli as indicators of hygiene. Target ranges for levels of TVC, TCC and E. coli were defined from the literature and the sample results compared against them. The TVC targets in milk, MR and water were <4.0 log10 CFU/mL. TCC and E. coli targets of <1.1 log10 CFU/mL (the detection limit) were used for milk, MR, concentrate feed and feeding equipment. For water, the TCC and E. coli targets were <1.0 log10 CFU/100 mL. The targets used for bedding boot swabs were <6.3 log10 TVC CFU/mL and <5.7 log10 TCC or E. coli CFU/mL. Farm management factors were included as fixed effects in a generalized linear mixed model to determine the probability of samples being within each hygiene indicator target range. Milk replacer samples obtained from automatic feeders were more likely to be within the TVC target range (0.63 probability) than those prepared manually (0.34) or milk samples taken from the bulk tank (0.23). Concentrate feed samples taken from buckets in single-calf pens were more likely to have E. coli detected (0.89) than samples taken from group pen troughs (0.97). A very small proportion of water samples were within the indicator targets (TVC 9.8%, TCC 6.0%, E. coli 10.2%). Water from self-fill drinkers had a lower likelihood of being within the TVC target (0.03) than manually filled buckets (0.14), and water samples from single pens were more likely to be within TCC target ranges (0.12) than those from group pens (0.03). However, all self-fill drinkers were located in group pens so these results are likely confounded. Where milk feeders were cleaned after every feed, there was a greater likelihood of being within the TVC target range (0.47, compared with 0.23 when not cleaned after every feed). Detection of coliforms in milk replacer mixing utensils was linked with reduced probability of TVC (0.17, compared with 0.43 when coliforms were not detected) and TCC (0.38, compared with 0.62), which was within target in feeders. Key factors related to increased probability of bedding samples being within TCC target range were use of group calf pens (0.96) rather than single-calf pens (0.80), use of solid floors (0.96, compared with 0.76 for permeable floors) and increased space allowance of calves (0.94 for pens with ≥2 m2/calf, compared with 0.79 for pens with <2 m2/calf). Bedding TVC was more likely to be within the target range in group (0.84) rather than in single pens (0.66). The results show that hygiene levels in the calf rearing environment vary across farms and that management and housing design impact hygiene.This research was funded by the Department of Agriculture, Environment and Rural Affairs (DAERA) project 17 1 03 with co-funding by Agrisearch
    • …
    corecore