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 28 

The temporal variability of the human microbiome may be an important factor in determining its 29 

relationship with health and disease. In this study, the saliva of 40 participants was collected every 30 

two months over a one year period to determine the temporal variability of the human salivary 31 

microbiome. Salivary pH and 16S rRNA gene copy number was measured for all participants, with the 32 

microbiome of ten participants assessed through 16S rRNA amplicon sequencing. In February 2013, 33 

16S rRNA gene copy number was significantly (P<0.001) higher, with individual changes between 34 

time points significant (P=0.003). Salivary pH levels were significantly (P<0.001) higher in December 35 

2012 than in October 2012 and February 2013, with significant (P<0.001) individual variations seen 36 

throughout. Bacterial α-diversity showed significant differences between participants (P<0.001), but 37 

not sampling periods (P=0.801), and a significant positive correlation with salivary pH (R2=7.8%; 38 

P=0.019). At the phylum level, significant differences were evident between participants in the 39 

Actinobacteria (P<0.001), Bacteroidetes (P<0.001), Firmicutes (P=0.008), Fusobacteria (P<0.001), 40 

Proteobacteria (P<0.001), Synergistetes (P<0.001), and Spirochaetes (P=0.003) phyla. This study 41 

charted the temporal variability of the salivary microbiome, suggesting that bacterial diversity is 42 

stable, but that 16S rRNA gene copy number may be subject to seasonal flux. 43 

 44 

 45 

 46 

 47 

  48 

 49 

 50 

 51 

 52 

Introduction 53 
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 54 

The role that the human microbiome plays in health and disease has become a major area of 55 

interest, and has revealed a number of novel links to disease (Cho & Blaser, 2012). The human 56 

microbiome is closely linked to the physiological state of the host, and the state of the immune 57 

system in particular can have substantial effects on its structure and function. Understanding the 58 

temporal variability of the human microbiome may give novel insights into the pathways leading to 59 

microbiome-related conditions (Grice et al., 2009).  60 

 61 

The human oral cavity consists of a number of well-defined areas (tongue dorsum, lateral sides of 62 

tongue, buccal epithelium, hard palate, soft palate, supragingival plaque of tooth surfaces, 63 

subgingival plaque, maxillary anterior vestibule, and tonsils), which have been shown to have distinct 64 

microbiomes (Aas et al., 2005). Culture-independent study of the human oral microbiome has 65 

identified over 600 bacterial species which are prevalent, with distinct bacterial populations present 66 

at different spatial regions (Dewhirst et al., 2010). Other studies have shown the microbiome to be 67 

an important component of some oral diseases, such as periodontal disease (Dahan et al., 2004; Liu 68 

et al., 2012; Schwarzberg et al., 2014) and dental caries (Yang et al., 2012; Scannapieco, 2013). 69 

Interestingly, the oral microbiome has also been related to systemic diseases, including 70 

cardiovascular disease (Seymour et al., 2007), ischemic stroke (Joshipura et al., 2002), and diabetes 71 

(Genco et al., 2005). 72 

 73 

Due to the ease of sampling, saliva has been one of the most widely studied oral features in humans. 74 

However, the microbiome found within human saliva is distinct from the microbiomes of other oral 75 

structures, such as the tongue, tonsils, throat, and gingiva. Using culture-independent sequencing 76 

the microbiome of saliva is dominated at the phylum level by the Firmicutes, Bacteroidetes, 77 

Proteobacteria, Fusobacteria, and Actinobacteria whilst resolving down to the genus indicated , that 78 
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Streptococcus, Veillonella, Prevotella, Neisseria, and Fusobacterium genera accounted for the 79 

majority of the microbiome (Segata et al., 2012). 80 

 81 

The variation in saliva microbiomes in ten saliva samples obtained from each of the twelve sampling 82 

locations around the world was assessed but it was not possible to link microbial diversity to 83 

geographical origins (Nasidze et al., 2009). The primary observation of this study was that there was 84 

a high degree of differences between individuals within populations; estimated at approximately 85 

13.5%. Interestingly, this is also similar to the total variance in neutral genetic markers within the 86 

human population; suggesting that the composition of the oral microbiome is largely determined by 87 

non-genetic factors, such as environmental features. In line with this, a longitudinal study of the 88 

salivary microbiome of monozygotic and dizygotic twins suggested that age and the environment has 89 

a higher impact on the composition of the oral microbiome than the host’s genetic make-up 90 

(Stahringer et al., 2012). 91 

 92 

The regulation of the human body in response to, or in anticipation of, changing environmental 93 

conditions is an evolutionary advantage; allowing for physiological and behavioural changes to occur. 94 

Seasonal alterations in physiological and behavioural responses including weight and reproductive 95 

changes, are well established in mammals and linked to the effects of melatonin (Barrett & Bolborea, 96 

2012). Melatonin has also been shown to be responsible for seasonal changes in the human immune 97 

system, namely cytokine production, neutrophil activity, and the differentiation and proliferation of 98 

lymphocytes (Klink et al., 2012). There are also seasonal trends in upper respiratory illnesses, 99 

particularly those related to viral infections (Linder et al., 2013), which have been associated with 100 

increased bacterial loads (Chappell et al., 2013). Taking these data together it may be that the 101 

salivary microbiome will also show seasonal variability which may reflect host physiology, 102 

immunological status and biochemistry. 103 

 104 
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To investigate this possibility, we sampled 40 participants over a one year period, collecting saliva 105 

samples every two months. For all participants, we measured salivary pH and used quantitative PCR 106 

to determine salivary 16S rRNA gene copy number. The microbiome was assessed in sub-group of ten 107 

participants, whom were selected based on their lifestyle similarities, through amplicon sequencing 108 

of the V3 to V4 region of the 16S rRNA gene. These analyses suggest a seasonal change in 16S rRNA 109 

gene copy number in late winter, with no stage of the year exhibiting a change in salivary bacterial 110 

diversity. 111 

 112 

 113 

 114 

 115 

 116 

 117 

 118 

 119 

 120 

 121 

 122 

 123 

 124 

 125 

 126 

 127 

 128 

 129 

 130 



6 

Materials and Methods 131 

 132 

Ethics Statement 133 

This study received ethical approval from the Aberystwyth University Research Ethics Committee. 134 

Written informed consent was obtained from all participants at least 24 hours before the first sample 135 

was donated and additional consent forms were obtained before each subsequent sample was 136 

donated. All participant information obtained was link anonymised prior to subsequent data analysis. 137 

 138 

Participant Recruitment and Sampling 139 

Saliva samples were obtained from 40 participants consisting of staff and students at Aberystwyth 140 

University, over a one year period, from October 2012 to October 2013. During this period, a total of 141 

seven samples were collected every two months, each over a twelve day period, i.e. October 2012 142 

(10/09/2012 to 21/09/2012), December 2012 (10/12/2012 to 21/12/2012), February 2013 143 

(11/02/2013 to 22/02/2013), April 2013 (08/04/2013 to 19/04/2013), June 2013 (10/06/2014 to 144 

21/06/2014), August 2013 (12/08/2013 to 23/08/2013), and October 2013 (14/10/2013 to 145 

25/10/2013). Participants donated 5 mL of saliva into a sterile 50 mL centrifuge tube and stimulated 146 

additional saliva if necessary. All participant donations were completed in one time point. 147 

Participants were not restricted in eating or drinking prior to donating a saliva sample. At each 148 

sampling, information on oral hygiene practice, antibiotic use, smoking history and diet was 149 

collected. 150 

 151 

Sample Processing and DNA Extraction 152 

All saliva samples were checked to ensure a 5 mL volume of sample was present. Any excess saliva 153 

above 5 mL was removed. Samples then underwent centrifugation at 10,000 x g for 20 minutes at 154 

4°C, after which 2 mL of the saliva supernatant was transferred to a PCR grade microcentrifuge tube. 155 

The remaining saliva supernatant was removed and destroyed, and the saliva pellet transferred to a 156 
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PCR grade microcentrifuge tube. The pellet was stored at -80°C until DNA extraction was completed 157 

within seven days of sample collection. All salivary supernatant samples were stored at -80°C until all 158 

sampling time points had been completed. Genomic DNA was extracted from 200 µL of the saliva 159 

pellet using a FastDNA SPIN kit for soil (MP Biomedical, Santa Ana, USA) following manufacturer’s 160 

instructions. Bead beating was carried out in a FastPrep-24 machine (MP Biomedical) with three 161 

cycles at speed setting 6.0 for 30 sec, with cooling on ice for 60 sec between cycles. Genomic DNA 162 

was eluted with 50 µL of DES (DNase/Pyrogen-Free Water) and dsDNA concentration determined, in 163 

duplicate, using 2 µL on the Epoch spectrometer system (BioTek, UK). 164 

 165 

16S rRNA Quantitative PCR 166 

To calculate the 16S rRNA gene copy number within salivary DNA extracts, standards with known 16S 167 

rRNA gene copy numbers were created through amplification of the entire 16S rRNA gene of five 168 

randomly selected October 2012 samples. Creation of standards was completed as previously 169 

described by Jones et al., (2014). In brief, PCR reactions were completed in a 20 µL reaction volume 170 

consisting of 10 µL of 2 x BioMix (BioLine), 0.25 µL each of 27f (5’-AGA GTT TGA TCC TGG CTC AG-3’) 171 

and 1389r (5’-ACG GGC GGT GTG TAC AAG-3’) primers (Hongoh et al., 2003) to give a final 172 

concentration of 500 nM, 1 µL of neat extracted DNA and 9.5 µL of PCR Grade Water (Roche). PCR 173 

consisted of 94 °C for 2 min, 30 cycles of 94 °C for 45 sec, 55 °C for 45 sec, and 72°C for 90 sec, 174 

followed by a final elongation step of 72 °C for 7 min. The resulting PCR products were combined and 175 

purified using an Isolate II PCR and Gel Extraction purification kit (BioLine, UK), following 176 

manufacturer’s instructions and quantified with an Epoch spectrometer. After determination of gene 177 

copy number, serial dilutions of 1010, 108, 106, 104, 102, and 100 were made and used in subsequent 178 

quantitative PCR reactions.  179 

 180 

Quantitative PCR was completed on neat extracted DNA with each reaction completed in 25 µL 181 

volumes, each consisting of 12.5 µL 2 x SYBR Green Mastermix (Life Technologies), 0.25 µL of each 182 
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EUBF1 (5’-GTG STG CAY GGY TGT CGT CA-3’) and EUBR1 (5’-ACG TCR TCC MCA CCT TCC TC-3’) 183 

primers (Maeda et al., 2003), in a final concentration of 400 nM, 9 µL of PCR Grade Water (Roche) 184 

and 3 µL of neat DNA extract. Reactions were run using a C100 thermal cycler (BioRad, Hercules, 185 

USA) and CFX96 optical detector (BioRad), with data captured using CFX Manager software (BioRad), 186 

under conditions of 95 °C for 10 min, 40 cycles of 95 °C for 15 sec and 60 °C for 60 sec followed by a 187 

melt curve consisting of a temperature gradient of 60 °C to 95°C in 0.5°C increments, each for five 188 

seconds. The CFX Manager software created a standard curve of Cq values for each of the six 189 

standards with known 16S rRNA gene copy number and used this to calculate the estimated 16S 190 

rRNA gene copy number for each of the salivary DNA extracts with an unknown concentration based 191 

on the Cq value of each individual sample. 192 

 193 

Selection of Participants for 16S rRNA Amplicon Sequencing 194 

Of the 40 recruited participants in this study, a subgroup of ten was selected for 16S rRNA amplicon 195 

sequencing of all seven monthly samples collected. This subgroup was selected based on supporting 196 

information given at each bi-monthly sample, with a view to selecting a group of participants with 197 

minimal differences. Participants were selected based on oral hygiene practices (no history of 198 

mouthwash but a history of flossing at least weekly), smoking history (no current smokers and past 199 

smokers with a cessation period greater than ten years), allergen history (no asthma or hay fever), 200 

diet (only individuals with a meat and vegetable diet), antibiotic exposure (no antibiotic use within 201 

sampling period and six months prior to start) but with no restriction on age or gender. 202 

 203 

16S rRNA Amplicon Preparation 204 

Sequencing of the 16S rRNA gene was carried out via amplification of the V3 to V4 region and 205 

subsequent amplicon sequencing on the Illumina MiSeq platform. Firstly, the V3 to V4 region of the 206 

16S rRNA gene was amplified through duplicate PCR with locus specific primers, alongside negative 207 

water controls. In a 25 µL reaction volume, 12.5 ng of extracted DNA or 2.5 µL of PCR grade water for 208 
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negative controls, was added to 12.5 µL of 2 x Accuzyme Mix (BioLine) and 5 µL each of a 1 µM 209 

concentration of 319f primer (5’– CCT ACG GGN GGC WGC AG–3’) with Illumina forward overhang 210 

adapter sequence (5’ – TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG-3’) and 806r primer (5’–211 

GAC TAC HVG GGT ATC TAA TCC–3’) with Illumina reverse overhang adapter sequence (5’- GTC TCG 212 

TGG GCT CGG AGA TGT GTA TAA GAG ACA G-3’) as detailed by Klindworth et al., (2013). PCR 213 

consisted of 95 °C for 3 min, followed by 25 cycles at 95 °C for 30 sec, 55 °C for 30 sec, and 72°C for 214 

30 sec with a final elongation step (72 °C, 5 min). Each duplicate PCR volume was confirmed through 215 

visualisation on a 2% agarose gel. Subsequently, reaction volumes were combined and purified using 216 

an Isolate II PCR and Gel Extraction kit (BioLine) eluting into 20 µL of kit buffer. Following purification, 217 

a second PCR was completed to attach Illumina adaptors to amplified products to allow multiplexed 218 

amplicon sequencing on the Illumina MiSeq platform. To a final reaction volume of 25 µL, 2.5 µL of 219 

purified PCR product was added to 12.5 µL of 2 x Accuzyme Mix (BioLine), 5 µL of PCR Grade Water 220 

(Roche) and 2.5 µL each of the relevant Nextera XT Index Primer 1 (N7##) and Nextera XT Index 221 

Primer 2 (S5##) (Illumina, USA) as detailed in Supplementary Information Table S1. The reaction mix 222 

underwent a limited cycle PCR consisting of 95 °C for 3 min, eight cycles of 95 °C for 30 sec, 55°C for 223 

30 sec, and 72°C for 30 sec with a final elongation step (72 °C, 5 min). To remove non-combined 224 

adaptors, the entire reaction volume was fractionated on a 2% agarose gel. The gel was visualised 225 

using a DR195M Transilluminator (Clare Chemical Research, Colorado, USA) and each PCR product 226 

excised using a sterile scalpel blade. PCR products were purified using an Isolate II PCR and Gel 227 

Extraction kit (BioLine) with elution into 20 µL of kit buffer and quantified using a Quant-iT dsDNA 228 

High Sensitivity assay kit and a Qubit fluorometer (Life Technologies, UK). 229 

 230 

16S rRNA Amplicon Sequencing and Analysis 231 

Individual sample libraries were pooled together in equimolar concentration and sequenced on the 232 

Illumina MiSeq platform using MiSeq v3 reagents for a 2 x 300 bp run at the IBERS Translational 233 

Genomics Facility, Aberystwyth University, UK.  As a control for low diversity sequences, 20% PhiX 234 
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DNA was also sequenced. Sample reads were demultiplexed and trimmed for quality, with 235 

overlapping reads merged using FLASH (Magoč & Salzberg, 2011). Merged reads were analysed using 236 

the MG-RAST metagenomics analysis pipeline (Meyer et al., 2008). Taxonomic alignments of 237 

sequences was completed using ‘Best Hit Classification’ facility within MG-RAST against the 238 

Ribosomal Database Project (Cole et al., 2009) facility, with only those sequences with a minimum 239 

alignment identity of 97%, maximum e-value of 1 x 10-5, and a minimum alignment cut-off of 15 240 

being used. Sequences were exported from MG-RAST into Microsoft Excel 2010 where sequence 241 

numbers for each sample were normalised as a percentage composition of the total volume of 242 

sequences for each taxonomic level of classification for that sample. All sequence files are available 243 

under the MG-RAST project ID 11549: ‘Charting Temporal Variability in the Salivary Microbiome’. 244 

Raw sequence reads are available at the European Nucleotide Archive under primary accession 245 

number PRJEB9010 and secondary accession number ERP010064. 246 

 247 

pH Measurements of Saliva 248 

Measurements of the pH of saliva supernatant was carried out using a B-212 Twin pH Meter (Horiba, 249 

Kyoto, Japan) after two point calibration using pH 7 and pH 4 buffers. For pH measurements, 200 µL 250 

of saliva supernatant was used. After each reading, the sensor was washed with ultrapure water and 251 

blotted dry.  252 

 253 

Data and Statistical Analysis 254 

Arithmetic means and standard deviations were calculated, and data figures created in Microsoft 255 

Excel 2010. Additional analyses, including one-way analysis of variances and regression analyses were 256 

completed in the MINITAB 14 package. Multivariate analysis, including principal component analysis, 257 

was completed using the MetaboAnalyst platform (Xia et al., 2012). Where shown, P values indicate 258 

the significance of one-way ANOVA tests unless otherwise stated. In some figures, significance 259 

thresholds are indicated using the standard format of *** = P < 0.001, ** = P < 0.01, and * = P < 0.05. 260 
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Results 261 

 262 

Participant Recruitment and Collection 263 

Saliva was collected from 40 participants over one year, with sampling occurring over a two week 264 

period every two months, from October 2012 to October 2013. Participant information for the 265 

complete sample group is detailed in Table 1, alongside the characteristics of the sub-group of ten 266 

participants selected for 16S rRNA amplicon sequencing based on their lifestyle similarities. Full 267 

participant information is detailed in Supplementary Information Table S2. 268 

 269 

16S rRNA Bacterial Gene Concentrations 270 

Mean 16S rRNA gene copy numbers for all 40 participants measured through qPCR are given in 271 

Figure 1a, with average individual changes from one time point to the next, and from October 2012 272 

to October 2013, Figure 1b. One-way ANOVA showed that the February 2013 time point had a 273 

significantly (P < 0.001) higher 16S rRNA gene copy number than all other time points. Considering 274 

differences in 16S rRNA gene copy number between consecutive time periods, significant (P < 0.001) 275 

changes can be seen with February 2013 to April 2013 and June 2013 to August 2013 changes 276 

showing a net decrease.  277 

 278 

16S rRNA Bacterial Diversity 279 

To investigate if 16S rRNA gene copy number changes reflected changes in microbiome diversity, 280 

amplicon sequencing of the 16S rRNA gene was completed. Amplicon sequencing statistics are 281 

detailed in Supplementary Information Table S3 and showed no significant differences in total 282 

sequence base pairs by participant (P = 0.268), or month (P = 0.537), or total sequence number by 283 

participant (P = 0.247) or month (P = 0.542). However, sequence lengths by participant were 284 

significantly different (P < 0.001) with a range of approximately 15 bp. However, no such differences 285 
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were seen in sequence length by month (P = 0.101). The GC content of sequences was also 286 

significantly different by participants (P < 0.001), but not by month (P = 0.896). 287 

 288 

Modelling using PCA shows that significant separation is not completely possible between 289 

participants, although a number of participants are clearly significantly different from a large number 290 

of samples from other participants (Figure 2a). No significant separation was evident between 291 

sampling month (Figure 2b).  292 

 293 

Analysis of species diversity within a sample at each time point was calculated using the MG-RAST 294 

online platform. Averages of α-diversity are given in Figure 3 by (a) participant and (b) month. 295 

Significant differences were seen between participants (P < 0.001) but not between sampling months 296 

(P = 0.801).  297 

 298 

From PCA modelling and α-diversity values, it is evident that the variation between participants is 299 

substantially, and significantly, greater than that seen between sampling time points. This suggested 300 

relative temporal stability in taxonomic diversity within the salivary microbiome. Although large-scale 301 

differences are not seen within the taxonomic diversity of the salivary microbiome, micro-level 302 

changes, at the genus level could be present. 303 

 304 

To investigate this possibility, one-way ANOVAs were completed to identify genera that may be 305 

significantly altered in their abundance over the sampling time course. The genera Rhodococcus (P = 306 

0.006) and Variovorax (P < 0.050) were shown to have significantly different abundances over the 307 

time course of sampling. However, both of these genera were very low in abundance and were 308 

present in less than 50% of all samples and indeed, Variovorax was only present in two samples. 309 

Therefore, it is likely that these significance values were statistical artefacts of the genera’s low 310 

abundances.  311 
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 312 

Focusing on significant individual differences in the taxonomic composition of the salivary 313 

microbiome, difference at the phylum level were initially established. The Actinobacteria (P < 0.001), 314 

Bacteroidetes (P < 0.001), Firmicutes (P = 0.008), Fusobacteria (P < 0.001), Proteobacteria (P < 0.001), 315 

Synergistetes (P < 0.001), and Spirochaetes (P = 0.003) were shown to be significantly different 316 

between participants (Figure 4). Although the number of unclassified sequences, with a suspected 317 

bacterial origin, contributed a substantial proportion of the total bacterial reads (up to 50% of reads 318 

in some samples), Firmicutes was the largest of the phyla.  319 

 320 

Assessment of Salivary pH 321 

The pH of any environment can be an important factor in the ability of microorganisms to inhabit and 322 

grow and could influence microbiome community composition. As with 16S rRNA gene copy number, 323 

the pH of saliva samples was measured at each time point, and the time point averages (Figure 5a) 324 

and average individual time point differences (Figure 5b) were calculated. Salivary pH was shown to 325 

be significantly (P = 0.003) higher in December 2012 compared to October 2012 and February 2013. 326 

Although over the one year period there was no net overall change, there were significant (P < 0.001) 327 

changes from one point to the next (Figure 5b).  328 

 329 

When attempting to correlate pH changes with other variables measured in this study, it was shown 330 

to have no significant (P = 0.219) relationship with 16S rRNA gene copy number. However, salivary 331 

pH levels were shown to have a small but significant positive correlation with α-diversity values (R2 = 332 

7.8%, P = 0.019).  333 

 334 

 335 

 336 

 337 
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Discussion 338 

The human microbiome may have an important role in health; with dysbiosis of the human 339 

microbiome linked to a number of diseases (The Human Microbiome Consortium, 2012). In further 340 

understanding its role, its temporal variability needs to be definitively established. We have 341 

previously suggested that the 16S rRNA gene copy number of human saliva may be an in vivo marker 342 

of immunity because previous work has shown an increase in this measurement over the winter 343 

months (Jones et al., 2014). However, this study focused only on the salivary microbiome of 344 

physically-active males. Here, we found that the highest level of salivary 16S rRNA gene copy number 345 

were observed when sampling around February. Others have suggested that there may be a link 346 

between salivary bacterial load and de novo plaque formation (Dahan et al., 2004) although this has 347 

been disputed by others (Rowshani et al., 2004). Salivary bacterial load has also been suggested not 348 

to be associated with common dental conditions such as gingivitis and periodontal disease (Mantilla 349 

Gomez et al., 2001). However, these studies relied on the use of culture-dependent techniques such 350 

as counting of colony forming units. Thus, it may be that there is no link between the bacterial load 351 

of cultureable bacteria and common dental diseases but a link with difficult-to-culture bacteria 352 

cannot be dismissed. It may be possible that the use of culture-independent techniques, such as 353 

quantitative PCR, may detect associations between salivary bacterial load and dental disease. 354 

 355 

In this current study, no relationships were seen between salivary 16S rRNA gene copy number and 356 

salivary pH level or α-diversity of the salivary microbiome. This suggests that the key variable(s) 357 

associated with the change were not measured in this study. Such variables could be markers for 358 

human immunological status such as immunoglobulin factors. However, when markers for the 359 

human immune system were measured by Jones et al., (2014) no association with 16S rRNA gene 360 

copy number was observed (Jones et al., 2014). 361 

 362 
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An early work which examined temporal and spatial differences in the human microbiome when 363 

sampled from several body sites found that spatial differences were more significantly than temporal 364 

differences. However, samples were only collected over a small time period with the first and last 365 

collection separated by four months (Costello et al., 2009). In another study, temporal variation 366 

across four body sites samples (right and left palms, gut, and tongue) was examined. This 367 

demonstrated a high degree of temporal variability so that no core temporal microbiome could be 368 

determined. This flux in bacterial populations notwithstanding, the microbiomes at each body site 369 

remained distinctive (Caporaso et al., 2011). 370 

 371 

Taken together, our analyses of the salivary microbiome indicated that participant differences were 372 

the major source of variation. Our work was also noteworthy for its length of study which, to our 373 

knowledge, appears to be unique within the published literature. The results imply that in terms of 374 

salivary microbiome composition, sampling from any time point within the year could be valid. The 375 

microbiomes of some individuals appeared to cluster more closely than others suggesting greater 376 

consistency in some study participants compared to others. In line with this, estimations of α-377 

diversity, were also shown to be determined more by participant than by sampling time point.  378 

 379 

The source of this individual variation appears to not have been measured as a variable of this study, 380 

but its expansion to cover a larger population could reveal a contribution of diet, climate, innate 381 

genetic variation in the human population or suggest that it reflects random buccal bacterial 382 

colonisation events in; for example, childhood. For example, Stahringer et al., (2012) found that the 383 

human salivary microbiome appears remarkably stable once in adulthood, which may be as a result 384 

of a stabilisation in diet, oral hygiene, and other lifestyle factors (Stahringer et al., 2012). Over a 385 

shorter time period, namely three months, the oral cavity and other body sites displayed a high 386 

degree of temporal stability (Costello et al., 2009).  387 

 388 
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When considered against the background of considerable individual-to-individual variation in salivary 389 

microbiomes it was significant that there was an increase in salivary 16S rRNA gene copy number in 390 

February 2013. This was towards the end of a winter period when individuals could be 391 

immunocompromised (Mourtzoukou & Falagas, 2007). Interestingly, no relationship between α-392 

diversity and salivary 16S rRNA gene copy number was observed, suggesting that the increase in time 393 

point is an equal increase in all bacteria, rather than specific taxa.  394 

 395 

At the phylum level of classification, seven phyla were seen to have significantly different 396 

abundances between participants. The large number of unclassified bacterial sequences evident in 397 

samples, with an average range of between 30% and 50%, is noteworthy. It may be possible that 398 

significant differences are indeed present within the taxonomic composition of the salivary 399 

microbiome, but that these differences exist within poorly defined taxa. 400 

 401 

Considering possible sources for participant associated changes in α-diversity, it could be relevant 402 

that a significant correlation was observed with salivary pH, though only 7.8% of variation was 403 

explained. The positive correlation between salivary pH and bacterial diversity suggests that as saliva 404 

becomes increasingly acidic, the range of bacteria able to tolerate these conditions decreases. This 405 

could reflect differential pH sensitivities for key enzymes in a particular range of species. Salivary pH 406 

is an important determinant in bacterial colonisation and growth. Indeed, lower salivary pH levels 407 

have been linked to oral diseases, such as dental caries (Humphrey & Williamson, 2001). However, in 408 

this study we observed changes in salivary pH between 6.8 and 7.4, which is arguably a small-scale 409 

change. The extent that these changes are able to impact intracellular or periplasmic enzyme 410 

function is hitherto unknown, and it is possible that the microbiome is able to tolerate this level of 411 

change without significant impact. This was not possible to measure in this study because of its 412 

observational design, though it may be an interesting principle to establish for future work. 413 

 414 
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Through sequencing of the 16S rRNA gene in this portion of work, only the taxonomic make-up of the 415 

salivary microbiome could be established. To establish the functional capacity of the salivary 416 

microbiome, metagenomic sequencing of the entire DNA found within a sample would be required. 417 

This method of sequencing however requires substantial resources which were not available to this 418 

project. Additionally, metagenomic sequencing allows for the assignment of species or even strain-419 

level taxonomy, and it may be that temporal variation exists within these classifications (Weinstock, 420 

2012). 421 

 422 

To summarise, our work on the taxonomic composition and diversity of the salivary microbiome in 423 

this portion of work appeared to be determined by individual differences, rather than temporal 424 

changes over the one year sampling period. Crucially, 16S rRNA gene copy number, which may be 425 

indicative of bacterial load, did differ at the end of the winter months and, if linked to an 426 

immunocompromised state, could lead to it being exploited clinically to indicate a patient’s 427 

immunological status. 428 

429 
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 512 

Table 1. Lifestyle History of Whole Participant Group and Sequencing Sub-Group 513 

Lifestyle Factor Whole Group Sequencing Sub-
Group 

Age 41.75 (13.14) 44.90 (14.86) 

Gender Ratio (Male : Female) 24 : 16 7: 3 

Current Smoker 4/40 0/10 

Smoking Pack Years 2.19 (2.10) 0.00 (0.00) 

Past Smoker 9/40 2/10 

Smoking Pack Years 9.47 (8.24) 10.50 (6.36) 

Cessation Period (Years) 14.80 (10.42) 27.50 (3.54) 

Never Smoker 27/40 8/10 

Asthma History 3/40 0/10 

Hay Fever History 5/40 0/10 

Mouthwash Use 19/40 0/10 

Antibacterial Mouthwash Use 17/19 0/10 

Manual Toothbrush Use 23/40 3/10 

Electric Toothbrush Use 17/40 7/10 

Flossing 26/40 10/10 

Flossing Frequency (Days Per Week) 3.46 (2.39) 2.90 (2.64) 

Diet including meat (1 to 3 days per 
Week) 

9/40 4/10 

Diet including meat (4 to 7 days per 
Week) 

26/40 6/10 

Vegetarian 5/40 0/10 

 514 

Group means of whole sample group (n=40) and sequencing sub-group (n=10). Group 515 
means are shown alongside standard deviations in brackets where appropriate. 516 

 517 
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 518 

Figure 1. 16S rRNA Gene Copy Number. Copy numbers of the 16S rRNA gene were 519 
measured through qPCR. Mean 16S rRNA gene copy number (a) time point show a 520 
significantly (P < 0.001) higher level in February 2013 than at all other time points. 521 
Additionally, average (b) individual changes from one time point to the next show a 522 
significant (P < 0.001) level of flux, with net decreases shown only in the February 2013 to 523 
April and June 2013 to August 2013 time point. Error bars in figures show one standard 524 
deviation around the mean. Letters indicate statistical groupings based on significance of one-525 
way ANOVA tests. 526 

527 
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 527 

Figure 2. Principal Component Analysis of 16S rRNA Taxonomy. PCA modelling was 528 
completed using genus-level taxonomic assignments, after normalisation for sequence 529 
number, and the MetaboAnalyst analysis pipeline. Resulting plots show partial separation by 530 
(a) participant, but not by (b) sampling month. Shaded areas indicate 95% confidence 531 
intervals of significant groupings by colour. 532 

533 
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 533 

Figure 3. α-Diversity Values by Participant and Month. Species diversity within a sample at 534 
each time point was calculated using the MG-RAST online platform, with averages of α-535 
diversity given by (a) participants, and by (b) month. Significant (P < 0.001) differences were 536 
observed between participants, but not between sampling months (P = 0.801). Errors bars 537 
display one standard deviation around the mean. Letters indicate statistical groupings based 538 
on significance of one-way ANOVA tests. 539 

540 
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 540 

Figure 4. Average Phylum Level Taxonomy for 16S rRNA Sequencing Sub-Group. 541 
Individual differences have been shown to be more substantial in determining the taxonomic 542 
composition of the salivary microbiome than any temporal or seasonal factors. At the phylum 543 
level of classification, these individual differences are pronounced, with a number of phyla 544 
displaying significantly different abundances between participants. Significance thresholds, as 545 
determined through one-way ANOVAs, are indicated in figure legend (*** = P < 0.001; ** = 546 
P < 0.01). 547 

548 
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 548 

Figure 5. Salivary pH Levels. Salivary pH average for each (a) time point, and (b) individual 549 
changes between each time point, were measured. The December 2012 time point was shown 550 
to have a significantly (P = 0.003) higher pH than the October 2012 and February 2013 time 551 
points only. Individual differences between time points were significant (P < 0.001), though 552 
there was no overall net change over the entire sampling period. Error bars shown are one 553 
standard deviation around the mean. Letters indicate statistical groupings based on 554 
significance of one-way ANOVA tests. 555 

 556 


