45 research outputs found

    Nickel exsolution driven phase transformation from an n=2 to an n=1 Ruddlesden Popper manganite for methane steam reforming reaction in SOFC conditions

    Full text link
    This is the peer reviewed version of the following article: S. Vecino-Mantilla, P. Gauthier-Maradei, M. HuvĂ©, J. M. Serra, P. Roussel, G. H. Gauthier, ChemCatChem 2019, 11, 4631, which has been published in final form at https://doi.org/10.1002/cctc.201901002. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] An original way to perform the exsolution of Ni nanoparticles on a ceramic support was explored for the development of methane steam reforming catalyst in SOFC anode conditions. The n=2 Ruddlesden-Popper (RP) phase La1.5Sr1.5Mn1.5Ni0.5O7 +/-delta has been synthesized by the Pechini method and subsequently reduced with an H-2-N-2 mixture at different temperatures and reducing times to induce the formation of two phases: LaSrMnO4 (n=1 RP) decorated with metallic Ni nanoparticles. Preliminary measurements of catalytic behavior for the steam reforming have been carried out in a reduction-reaction process with a mixture of 82 mol %CH4, 18 mol %N-2 and low steam to carbon ratio (S/C=0.15). The catalyst exhibits a selectivity for CO production (0.97), 14.60 mol % CH4 conversion and around 24.19 mol % H-2 production. Such catalytic behavior was maintained for more than 4 h, with a constant rate of hydrogen production and CH4 conversion rate.The authors acknowledge the financial support of the Colombian Administrative Department of Science, Technology and Innovation COLCIENCIAS (Project #110265842833 "Symmetrical high temperature Fuel Cell operating with Colombian natural gas" (contract #038-2015) and S. Vecino-Mantilla's Ph.D. scholarship (call #647)) and of the Spanish National Research Council CSIC (Project #COOPA20112). The authors are also grateful to UIS' X-Ray Laboratory (Parque Tecnologico Guatiguara) for XRD measurements, UPV's Electronic Microscopy Laboratory for the FESEM analysis, and finally to Margarita Vecino-Mantilla, Carolina Cardenas-Velandia, Santiago Paez-Duque, Ivan Suarez-Acelas (UIS), Maria Fabuel (UPV) and Olivier Gardoll (UCCS) for their contribution to materials synthesis and characterization. As well as Santiago Palencia, Monica Sandoval (UIS) and Caroline Pirovano (UCCS) are warmly acknowledged for useful discussions.Vecino-Mantilla, S.; Gauthier-Maradei, P.; HuvĂ©, M.; Serra Alfaro, JM.; Roussel, P.; Gauthier, GH. (2019). Nickel exsolution driven phase transformation from an n=2 to an n=1 Ruddlesden Popper manganite for methane steam reforming reaction in SOFC conditions. ChemCatChem. 11(18):4631-4641. https://doi.org/10.1002/cctc.201901002S463146411118Ghezel-Ayagh, H., & Borglum, B. P. (2017). Review of Progress in Solid Oxide Fuel Cells at FuelCell Energy. ECS Transactions, 78(1), 77-86. doi:10.1149/07801.0077ecstPark, B. H., & Choi, G. M. (2014). Ex-solution of Ni nanoparticles in a La0.2Sr0.8Ti1−xNixO3−ή alternative anode for solid oxide fuel cell. Solid State Ionics, 262, 345-348. doi:10.1016/j.ssi.2013.10.016Chung, Y. S., Kim, T., Shin, T. H., Yoon, H., Park, S., Sammes, N. M., 
 Chung, J. S. (2017). In situ preparation of a La1.2Sr0.8Mn0.4Fe0.6O4 Ruddlesden–Popper phase with exsolved Fe nanoparticles as an anode for SOFCs. Journal of Materials Chemistry A, 5(14), 6437-6446. doi:10.1039/c6ta09692aSun, Y., Li, J., Zeng, Y., Amirkhiz, B. S., Wang, M., Behnamian, Y., & Luo, J. (2015). A-site deficient perovskite: the parent for in situ exsolution of highly active, regenerable nano-particles as SOFC anodes. Journal of Materials Chemistry A, 3(20), 11048-11056. doi:10.1039/c5ta01733eHu, Y., Bouffanais, Y., Almar, L., Morata, A., Tarancon, A., & Dezanneau, G. (2013). La2−xSrxCoO4−ή (x = 0.9, 1.0, 1.1) Ruddlesden-Popper-type layered cobaltites as cathode materials for IT-SOFC application. International Journal of Hydrogen Energy, 38(7), 3064-3072. doi:10.1016/j.ijhydene.2012.12.047Li, Y., Zhang, W., Zheng, Y., Chen, J., Yu, B., Chen, Y., & Liu, M. (2017). Controlling cation segregation in perovskite-based electrodes for high electro-catalytic activity and durability. Chemical Society Reviews, 46(20), 6345-6378. doi:10.1039/c7cs00120gKharton, V. ., Yaremchenko, A. ., Shaula, A. ., Patrakeev, M. ., Naumovich, E. ., Logvinovich, D. ., 
 Marques, F. M. . (2004). Transport properties and stability of Ni-containing mixed conductors with perovskite- and K2NiF4-type structure. Journal of Solid State Chemistry, 177(1), 26-37. doi:10.1016/s0022-4596(03)00261-5Skinner, S. (2000). Oxygen diffusion and surface exchange in La2−xSrxNiO4+ÎŽ. Solid State Ionics, 135(1-4), 709-712. doi:10.1016/s0167-2738(00)00388-xBalachandran, P. V., Puggioni, D., & Rondinelli, J. M. (2013). Crystal-Chemistry Guidelines for Noncentrosymmetric A2BO4 Ruddlesden−Popper Oxides. Inorganic Chemistry, 53(1), 336-348. doi:10.1021/ic402283cAutret, C., Martin, C., Hervieu, M., Retoux, R., Raveau, B., AndrĂ©, G., & BourĂ©e, F. (2004). Structural investigation of Ca2MnO4 by neutron powder diffraction and electron microscopy. Journal of Solid State Chemistry, 177(6), 2044-2052. doi:10.1016/j.jssc.2004.02.012Dailly, J., Fourcade, S., Largeteau, A., Mauvy, F., Grenier, J. C., & Marrony, M. (2010). Perovskite and A2MO4-type oxides as new cathode materials for protonic solid oxide fuel cells. Electrochimica Acta, 55(20), 5847-5853. doi:10.1016/j.electacta.2010.05.034ZHAO, H., MAUVY, F., LALANNE, C., BASSAT, J., FOURCADE, S., & GRENIER, J. (2008). New cathode materials for ITSOFC: Phase stability, oxygen exchange and cathode properties of La2−xNiO4+ÎŽ. Solid State Ionics, 179(35-36), 2000-2005. doi:10.1016/j.ssi.2008.06.019Yoo, Y.-S., Choi, M., Hwang, J.-H., Im, H.-N., Singh, B., & Song, S.-J. (2015). La2NiO4+ÎŽ as oxygen electrode in reversible solid oxide cells. Ceramics International, 41(5), 6448-6454. doi:10.1016/j.ceramint.2015.01.083Das, A., Xhafa, E., & Nikolla, E. (2016). Electro- and thermal-catalysis by layered, first series Ruddlesden-Popper oxides. Catalysis Today, 277, 214-226. doi:10.1016/j.cattod.2016.07.014Liping, S., Lihua, H., Hui, Z., Qiang, L., & Pijolat, C. (2008). La substituted Sr2MnO4 as a possible cathode material in SOFC. Journal of Power Sources, 179(1), 96-100. doi:10.1016/j.jpowsour.2007.12.090Jin, C., Yang, Z., Zheng, H., Yang, C., & Chen, F. (2012). La0.6Sr1.4MnO4 layered perovskite anode material for intermediate temperature solid oxide fuel cells. Electrochemistry Communications, 14(1), 75-77. doi:10.1016/j.elecom.2011.11.008Sandoval, M. V., Pirovano, C., Capoen, E., Jooris, R., Porcher, F., Roussel, P., & Gauthier, G. H. (2017). In-depth study of the Ruddlesden-Popper LaxSr2−xMnO4±Ύ family as possible electrode materials for symmetrical SOFC. International Journal of Hydrogen Energy, 42(34), 21930-21943. doi:10.1016/j.ijhydene.2017.07.062Li-Ping, S., Qiang, L., Li-Hua, H., Hui, Z., Guo-Ying, Z., Nan, L., 
 Pijolat, C. (2011). Synthesis and performance of Sr1.5LaxMnO4 as cathode materials for intermediate temperature solid oxide fuel cell. Journal of Power Sources, 196(14), 5835-5839. doi:10.1016/j.jpowsour.2011.03.016Shen, J., Yang, G., Zhang, Z., Zhou, W., Wang, W., & Shao, Z. (2016). Tuning layer-structured La0.6Sr1.4MnO4+ÎŽ into a promising electrode for intermediate-temperature symmetrical solid oxide fuel cells through surface modification. Journal of Materials Chemistry A, 4(27), 10641-10649. doi:10.1039/c6ta02986hThommy, L., Joubert, O., Hamon, J., & Caldes, M.-T. (2016). Impregnation versus exsolution: Using metal catalysts to improve electrocatalytic properties of LSCM-based anodes operating at 600 °C. International Journal of Hydrogen Energy, 41(32), 14207-14216. doi:10.1016/j.ijhydene.2016.06.088Irvine, J. T. S., Neagu, D., Verbraeken, M. C., Chatzichristodoulou, C., Graves, C., & Mogensen, M. B. (2016). Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers. Nature Energy, 1(1). doi:10.1038/nenergy.2015.14Zhou, J., Shin, T.-H., Ni, C., Chen, G., Wu, K., Cheng, Y., & Irvine, J. T. S. (2016). In Situ Growth of Nanoparticles in Layered Perovskite La0.8Sr1.2Fe0.9Co0.1O4−ή as an Active and Stable Electrode for Symmetrical Solid Oxide Fuel Cells. Chemistry of Materials, 28(9), 2981-2993. doi:10.1021/acs.chemmater.6b00071Hua, B., Li, M., Sun, Y.-F., Li, J.-H., & Luo, J.-L. (2017). Enhancing Perovskite Electrocatalysis of Solid Oxide Cells Through Controlled Exsolution of Nanoparticles. ChemSusChem, 10(17), 3333-3341. doi:10.1002/cssc.201700936Yang, C., Li, J., Lin, Y., Liu, J., Chen, F., & Liu, M. (2015). In situ fabrication of CoFe alloy nanoparticles structured (Pr0.4Sr0.6)3(Fe0.85Nb0.15)2O7 ceramic anode for direct hydrocarbon solid oxide fuel cells. Nano Energy, 11, 704-710. doi:10.1016/j.nanoen.2014.12.001Zhang, W., & Zheng, W. (2014). Exsolution-Mimic Heterogeneous Surfaces: Towards Unlimited Catalyst Design. ChemCatChem, 7(1), 48-50. doi:10.1002/cctc.201402757Liu, S., Zhang, W., Deng, T., Wang, D., Wang, X., Zhang, X., 
 Zheng, W. (2017). Mechanistic Origin of Enhanced CO Catalytic Oxidation over Co3 O4 /LaCoO3 at Lower Temperature. ChemCatChem, 9(16), 3102-3106. doi:10.1002/cctc.201700937ArrivĂ©, C., Delahaye, T., Joubert, O., & Gauthier, G. (2013). Exsolution of nickel nanoparticles at the surface of a conducting titanate as potential hydrogen electrode material for solid oxide electrochemical cells. Journal of Power Sources, 223, 341-348. doi:10.1016/j.jpowsour.2012.09.062Gao, Y., Chen, D., Saccoccio, M., Lu, Z., & Ciucci, F. (2016). From material design to mechanism study: Nanoscale Ni exsolution on a highly active A-site deficient anode material for solid oxide fuel cells. Nano Energy, 27, 499-508. doi:10.1016/j.nanoen.2016.07.013Sun, Y.-F., Zhang, Y.-Q., Chen, J., Li, J.-H., Zhu, Y.-T., Zeng, Y.-M., 
 Luo, J.-L. (2016). New Opportunity for in Situ Exsolution of Metallic Nanoparticles on Perovskite Parent. Nano Letters, 16(8), 5303-5309. doi:10.1021/acs.nanolett.6b02757Ouellette, R. J., & Rawn, J. D. (2014). Organometallic Chemistry of Transition Metal Elements and Introduction to Retrosynthesis. Organic Chemistry, 567-593. doi:10.1016/b978-0-12-800780-8.00017-6Yaremchenko, A. A., Bannikov, D. O., Kovalevsky, A. V., Cherepanov, V. A., & Kharton, V. V. (2008). High-temperature transport properties, thermal expansion and cathodic performance of Ni-substituted LaSr2Mn2O7−ή. Journal of Solid State Chemistry, 181(11), 3024-3032. doi:10.1016/j.jssc.2008.07.038Chupakhina, T. I., Bazuev, G. V., & Zabolotskaya, E. V. (2010). Synthesis and magnetic properties of a new layered oxide La1.5Sr1.5Mn1.25Ni0.75O6.67. Russian Journal of Inorganic Chemistry, 55(2), 247-253. doi:10.1134/s0036023610020178Jardiel, T., Caldes, M. T., Moser, F., Hamon, J., Gauthier, G., & Joubert, O. (2010). New SOFC electrode materials: The Ni-substituted LSCM-based compounds (La0.75Sr0.25)(Cr0.5Mn0.5−xNix)O3−ή and (La0.75Sr0.25)(Cr0.5−xNixMn0.5)O3−ή. Solid State Ionics, 181(19-20), 894-901. doi:10.1016/j.ssi.2010.05.012Svoboda, K., Siewiorek, A., Baxter, D., Rogut, J., & PohoƙelĂœ, M. (2008). Thermodynamic possibilities and constraints for pure hydrogen production by a nickel and cobalt-based chemical looping process at lower temperatures. Energy Conversion and Management, 49(2), 221-231. doi:10.1016/j.enconman.2007.06.036Bhardwaj, A., Kaur, J., Wuest, M., & Wuest, F. (2017). In situ click chemistry generation of cyclooxygenase-2 inhibitors. Nature Communications, 8(1). doi:10.1038/s41467-016-0009-6Zhu, J., Li, H., Zhong, L., Xiao, P., Xu, X., Yang, X., 
 Li, J. (2014). Perovskite Oxides: Preparation, Characterizations, and Applications in Heterogeneous Catalysis. ACS Catalysis, 4(9), 2917-2940. doi:10.1021/cs500606gBroux, T., Prestipino, C., Bahout, M., Hernandez, O., Swain, D., Paofai, S., 
 Greaves, C. (2013). Unprecedented High Solubility of Oxygen Interstitial Defects in La1.2Sr0.8MnO4+ÎŽ up to ÎŽ ∌ 0.42 Revealed by In Situ High Temperature Neutron Powder Diffraction in Flowing O2. Chemistry of Materials, 25(20), 4053-4063. doi:10.1021/cm402194qMUNNINGS, C., SKINNER, S., AMOW, G., WHITFIELD, P., & DAVIDSON, I. (2006). Structure, stability and electrical properties of the La(2−x)SrxMnO4±Ύ solid solution series. Solid State Ionics, 177(19-25), 1849-1853. doi:10.1016/j.ssi.2006.01.009Li, R. K., & Greaves, C. (2000). Synthesis and Characterization of the Electron-Doped Single-Layer Manganite La1.2Sr0.8MnO4−ή and Its Oxidized Phase La1.2Sr0.8MnO4+ÎŽ. Journal of Solid State Chemistry, 153(1), 34-40. doi:10.1006/jssc.2000.8735Wang, Y., Shih, K., & Jiang, X. (2012). Phase transformation during the sintering of Îł-alumina and the simulated Ni-laden waste sludge. Ceramics International, 38(3), 1879-1886. doi:10.1016/j.ceramint.2011.10.015Senff, D., Reutler, P., Braden, M., Friedt, O., Bruns, D., Cousson, A., 
 Revcolevschi, A. (2005). Crystal and magnetic structure ofLa1−xSr1+xMnO4: Role of the orbital degree of freedom. Physical Review B, 71(2). doi:10.1103/physrevb.71.024425Larochelle, S., Mehta, A., Lu, L., Mang, P. K., Vajk, O. P., Kaneko, N., 
 Greven, M. (2005). Structural and magnetic properties of the single-layer manganese oxideLa1−xSr1+xMnO4. Physical Review B, 71(2). doi:10.1103/physrevb.71.024435Bieringer, M., & Greedan, J. E. (2002). Structure and magnetism in BaLaMnO4 +/– ÎŽ (ÎŽ = 0.00, 0.10) and BaxSr1 – xLaMnO4. Disappearance of magnetic order for x > 0.30. Journal of Materials Chemistry, 12(2), 279-287. doi:10.1039/b104405mKitchen, H. J., Saratovsky, I., & Hayward, M. A. (2010). Topotactic reduction as a synthetic route for the preparation of low-dimensional Mn(II) oxide phases: The structure and magnetism of LaAMnO4-x (A = Sr, Ba). Dalton Transactions, 39(26), 6098. doi:10.1039/b923966aBandyopadhyay, J., & Gupta, K. P. (1977). Low temperature lattice parameter of nickel and some nickel-cobalt alloys and GrĂŒneisen parameter of nickel. Cryogenics, 17(6), 345-347. doi:10.1016/0011-2275(77)90130-8Lai, K.-Y., & Manthiram, A. (2018). Evolution of Exsolved Nanoparticles on a Perovskite Oxide Surface during a Redox Process. Chemistry of Materials, 30(8), 2838-2847. doi:10.1021/acs.chemmater.8b01029Blasse, G. (1965). New compositions with K2NiF4 structure. Journal of Inorganic and Nuclear Chemistry, 27(12), 2683-2684. doi:10.1016/0022-1902(65)80178-6Moritomo, Y., Tomioka, Y., Asamitsu, A., Tokura, Y., & Matsui, Y. (1995). Magnetic and electronic properties in hole-doped manganese oxides with layered structures:La1−xSr1+xMnO4. Physical Review B, 51(5), 3297-3300. doi:10.1103/physrevb.51.3297Ganguly, P., & Rao, C. N. R. (1984). Crystal chemistry and magnetic properties of layered metal oxides possessing the K2NiF4 or related structures. Journal of Solid State Chemistry, 53(2), 193-216. doi:10.1016/0022-4596(84)90094-xBenabad, A., Daoudi, A., Salmon, R., & Le Flem, G. (1977). Les phases SrLnMnO4 (Ln = La, Nd, Sm, Gd), BaLnMnO4 (Ln = La, Nd) et M1+xLa1−xMnO4 (M = Sr, Ba). Journal of Solid State Chemistry, 22(2), 121-126. doi:10.1016/0022-4596(77)90028-7Wu, W. B., Huang, D. J., Guo, G. Y., Lin, H.-J., Hou, T. Y., Chang, C. F., 
 Jo, T. (2004). Orbital polarization of LaSrMnO4 studied by soft X-ray linear dichroism. Journal of Electron Spectroscopy and Related Phenomena, 137-140, 641-645. doi:10.1016/j.elspec.2004.02.072GONZALEZDELACRUZ, V., HOLGADO, J., PERENIGUEZ, R., & CABALLERO, A. (2008). Morphology changes induced by strong metal–support interaction on a Ni–ceria catalytic system. Journal of Catalysis, 257(2), 307-314. doi:10.1016/j.jcat.2008.05.009Dulub, O., Hebenstreit, W., & Diebold, U. (2000). Imaging Cluster Surfaces with Atomic Resolution: The Strong Metal-Support Interaction State of Pt Supported onTiO2(110). Physical Review Letters, 84(16), 3646-3649. doi:10.1103/physrevlett.84.3646Wei, T., Jia, L., Zheng, H., Chi, B., Pu, J., & Li, J. (2018). LaMnO3-based perovskite with in-situ exsolved Ni nanoparticles: a highly active, performance stable and coking resistant catalyst for CO2 dry reforming of CH4. Applied Catalysis A: General, 564, 199-207. doi:10.1016/j.apcata.2018.07.031A. Adamson A. Gat Physical Chemistry of Surfaces John Wiley & Sons Inc. New York 1997.Oh, T.-S., Rahani, E. K., Neagu, D., Irvine, J. T. S., Shenoy, V. B., Gorte, R. J., & Vohs, J. M. (2015). Evidence and Model for Strain-Driven Release of Metal Nanocatalysts from Perovskites during Exsolution. The Journal of Physical Chemistry Letters, 6(24), 5106-5110. doi:10.1021/acs.jpclett.5b02292Blander, M., & Katz, J. L. (1975). Bubble nucleation in liquids. AIChE Journal, 21(5), 833-848. doi:10.1002/aic.690210502Kelchner, C. L., Plimpton, S. J., & Hamilton, J. C. (1998). Dislocation nucleation and defect structure during surface indentation. Physical Review B, 58(17), 11085-11088. doi:10.1103/physrevb.58.11085Neagu, D., Tsekouras, G., Miller, D. N., MĂ©nard, H., & Irvine, J. T. S. (2013). In situ growth of nanoparticles through control of non-stoichiometry. Nature Chemistry, 5(11), 916-923. doi:10.1038/nchem.1773Raabe, O. G. (1971). Particle size analysis utilizing grouped data and the log-normal distribution. Journal of Aerosol Science, 2(3), 289-303. doi:10.1016/0021-8502(71)90054-1Pauw, B. R., KĂ€stner, C., & ThĂŒnemann, A. F. (2017). Nanoparticle size distribution quantification: results of a small-angle X-ray scattering inter-laboratory comparison. Journal of Applied Crystallography, 50(5), 1280-1288. doi:10.1107/s160057671701010xNeagu, D., Oh, T.-S., Miller, D. N., MĂ©nard, H., Bukhari, S. M., Gamble, S. R., 
 Irvine, J. T. S. (2015). Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolution. Nature Communications, 6(1). doi:10.1038/ncomms9120Hansen, T. W., DeLaRiva, A. T., Challa, S. R., & Datye, A. K. (2013). Sintering of Catalytic Nanoparticles: Particle Migration or Ostwald Ripening? Accounts of Chemical Research, 46(8), 1720-1730. doi:10.1021/ar3002427Lif, J., Skoglundh, M., & Löwendahl, L. (2002). Sintering of nickel particles supported on Îł-alumina in ammonia. Applied Catalysis A: General, 228(1-2), 145-154. doi:10.1016/s0926-860x(01)00957-7AgĂŒero, F. N., BeltrĂĄn, A. M., FernĂĄndez, M. A., & CadĂșs, L. E. (2019). Surface nickel particles generated by exsolution from a perovskite structure. Journal of Solid State Chemistry, 273, 75-80. doi:10.1016/j.jssc.2019.02.036Asoro, M. A., Ferreira, P. J., & Kovar, D. (2014). In situ transmission electron microscopy and scanning transmission electron microscopy studies of sintering of Ag and Pt nanoparticles. Acta Materialia, 81, 173-183. doi:10.1016/j.actamat.2014.08.028Girona, K., Sailler, S., GĂ©lin, P., Bailly, N., Georges, S., & Bultel, Y. (2014). Modelling of gradual internal reforming process over Ni-YSZ SOFC anode with a catalytic layer. The Canadian Journal of Chemical Engineering, 93(2), 285-296. doi:10.1002/cjce.22113W. K. B. W. Ramli Exsolved Base Metal Catalyst Systems with Anchored Nanoparticles for Carbon Monoxide (CO) and Nitric Oxides (NO Oxidation Newcastle University 2017.Sadykov, V., Mezentseva, N., Alikina, G., Bunina, R., Pelipenko, V., Lukashevich, A., 
 Rietveld, B. (2009). Nanocomposite catalysts for internal steam reforming of methane and biofuels in solid oxide fuel cells: Design and performance. Catalysis Today, 146(1-2), 132-140. doi:10.1016/j.cattod.2009.02.035Atkinson, A., Barnett, S., Gorte, R. J., Irvine, J. T. S., McEvoy, A. J., Mogensen, M., 
 Vohs, J. (2004). Advanced anodes for high-temperature fuel cells. Nature Materials, 3(1), 17-27. doi:10.1038/nmat1040Dicks, A. . (1998). Advances in catalysts for internal reforming in high temperature fuel cells. Journal of Power Sources, 71(1-2), 111-122. doi:10.1016/s0378-7753(97)02753-5Roy, P. S., Park, N.-K., & Kim, K. (2014). Metal foam-supported Pd–Rh catalyst for steam methane reforming and its application to SOFC fuel processing. International Journal of Hydrogen Energy, 39(9), 4299-4310. doi:10.1016/j.ijhydene.2014.01.004Postole, G., Bosselet, F., Bergeret, G., Prakash, S., & GĂ©lin, P. (2014). On the promoting effect of H2S on the catalytic H2 production over Gd-doped ceria from CH4/H2O mixtures for solid oxide fuel cell applications. Journal of Catalysis, 316, 149-163. doi:10.1016/j.jcat.2014.05.011Cheah, S. K., Massin, L., Aouine, M., Steil, M. C., Fouletier, J., & GĂ©lin, P. (2018). Methane steam reforming in water deficient conditions on Ir/Ce0.9Gd0.1O2-x catalyst: Metal-support interactions and catalytic activity enhancement. Applied Catalysis B: Environmental, 234, 279-289. doi:10.1016/j.apcatb.2018.04.048Bartholomew, C. H. (1982). Carbon Deposition in Steam Reforming and Methanation. Catalysis Reviews, 24(1), 67-112. doi:10.1080/03602458208079650M. P. Pechini Method of Preparing Lead and Alkaline Earth Titanates and Niobates and Coating Method Using the Same to Form a Capacitor 1967 US3330697 A.Petƙíček, V., DuĆĄek, M., & Palatinus, L. (2014). Crystallographic Computing System JANA2006: General features. Zeitschrift fĂŒr Kristallographie - Crystalline Materials, 229(5). doi:10.1515/zkri-2014-173

    Deep-water macroalgae from the Canary Islands: new records and biogeographical relationships

    Get PDF
    Due to the geographical location and paleobiogeography of the Canary Islands, the seaweed flora contains macroalgae with different distributional patterns. In this contribution, the biogeographical relations of several new records of deep-water macroalgae recently collected around the Canarian archipelago are discussed. These are Bryopsidella neglecta (Berthotd) Rietema,Discosporangium mesarthrocarpum (Meneghini) Hauck, Hincksia onslowensis (Amsler et Kapraun)P.C. Silva, Syringoderma floridana Henry, Peyssonnelia harveyana J. Agardh, Cryptonemia seminervis(C. Agardh) J. Agardh, Botryodadia wynnei Ballantine, Gloiocladia blomquistii (Searles) R. E.Norris, PIahchrysis peltata (W. R. Taylor) P. Huv4 et H. Huv4, Leptofauchea brasiliensis Joly, and Sarcodiotheca divaricata W. R. Taylor. These new records, especially those in the Florideophyceae,support the strong affinity of the Canary Islands seaweed flora with the warm-temperate Mediterranean-Atlantic region. Some species are recorded for the first time from the east coast of the Atlantic Ocean, enhancing the biogeographic relations of the Canarian marine flora with that of the western Atlantic regions

    ZONATION SUPERFICIELLE DES COTES ROCHEUSES DE L'ÉTANG DE BERRE ET COMPARAISON AVEC CELLES DES COTES DU GOLFE DE MARSEILLE (de Carry à Sausset)

    No full text
    International audienc

    ZONATION SUPERFICIELLE DES COTES ROCHEUSES DE L'ÉTANG DE BERRE ET COMPARAISON AVEC CELLES DES COTES DU GOLFE DE MARSEILLE (de Carry à Sausset)

    No full text
    International audienc

    BIOTOPES ET BIOCÉNOSES DES ÉTANGS SAUMÂTRES CORSES : BIGUGLIA, DIANA, URBINO, PALO

    No full text
    International audienc

    BIOTOPES ET BIOCÉNOSES DES ÉTANGS SAUMÂTRES CORSES : BIGUGLIA, DIANA, URBINO, PALO

    No full text
    International audienc

    Methane steam reforming in water-deficient conditions on a new ni-exsolved ruddlesden-popper manganite: coke formation and h2s poisoning

    No full text
    International audienceThis research deals with the catalytic behavior of the methane steam reforming reaction over a new Ni-exsolved Ruddlesden-Popper manganite during prolonged reaction time (up to 100 h) with special focus on the possible carbon deposition and H2S poisoning. La1.5Sr1.5Mn1.5Ni0.5O7±Ύ material was synthesized and reduced in diluted hydrogen to induce Ni exsolution. Its catalytic behavior in long reaction times was compared to Ni-impregnated manganite and Ni/YSZ cermet. The catalytic measurements for the steam reforming reaction were carried out at 850 °C in low steam-to-carbon conditions. All materials are susceptible to H2S poisoning (50 ppm), forming undesired sulfide compounds with damaging impact on their catalytic activity. In contrast, during tests without H2S, the activity for cermet and impregnated materials drops at relatively short reaction time due to coking formation, as evidenced by TEM and TGA/MS analysis, while the behavior of new exsolved material remains stable throughout the test. This high stability of the new exsolved catalyst over a prolonged reaction time is a noticeable advantage due to its potential use as SOFC anode fed with natural gas free of H2S
    corecore