75 research outputs found

    Categorial Compositionality III: F-(co)algebras and the Systematicity of Recursive Capacities in Human Cognition

    Get PDF
    Human cognitive capacity includes recursively definable concepts, which are prevalent in domains involving lists, numbers, and languages. Cognitive science currently lacks a satisfactory explanation for the systematic nature of such capacities (i.e., why the capacity for some recursive cognitive abilities–e.g., finding the smallest number in a list–implies the capacity for certain others–finding the largest number, given knowledge of number order). The category-theoretic constructs of initial F-algebra, catamorphism, and their duals, final coalgebra and anamorphism provide a formal, systematic treatment of recursion in computer science. Here, we use this formalism to explain the systematicity of recursive cognitive capacities without ad hoc assumptions (i.e., to the same explanatory standard used in our account of systematicity for non-recursive capacities). The presence of an initial algebra/final coalgebra explains systematicity because all recursive cognitive capacities, in the domain of interest, factor through (are composed of) the same component process. Moreover, this factorization is unique, hence no further (ad hoc) assumptions are required to establish the intrinsic connection between members of a group of systematically-related capacities. This formulation also provides a new perspective on the relationship between recursive cognitive capacities. In particular, the link between number and language does not depend on recursion, as such, but on the underlying functor on which the group of recursive capacities is based. Thus, many species (and infants) can employ recursive processes without having a full-blown capacity for number and language

    Selective serotonin reuptake inhibitors versus placebo in patients with major depressive disorder. A systematic review with meta-analysis and Trial Sequential Analysis

    Full text link

    Developing attentional control in naturalistic dynamic road crossing situations

    Get PDF
    In the last 20 years, there has been increasing interest in studying visual attentional processes under more natural conditions. In the present study, we propose to determine the critical age at which children show similar to adult performance and attentional control in a visually guided task; in a naturalistic dynamic and socially relevant context: road crossing. We monitored visual exploration and crossing decisions in adults and children aged between 5 and 15 while they watched road trafc videos containing a range of trafc densities with or without pedestrians. 5–10 year old (y/o) children showed less systematic gaze patterns. More specifcally, adults and 11–15y/o children look mainly at the vehicles’ appearing point, which is an optimal location to sample diagnostic information for the task. In contrast, 5–10y/os look more at socially relevant stimuli and attend to moving vehicles further down the trajectory when the trafc density is high. Critically, 5-10y/o children also make an increased number of crossing decisions compared to 11–15y/os and adults. Our fndings reveal a critical shift around 10y/o in attentional control and crossing decisions in a road crossing task
    • 

    corecore