533 research outputs found

    Solving Tree Problems with Category Theory

    Full text link
    Artificial Intelligence (AI) has long pursued models, theories, and techniques to imbue machines with human-like general intelligence. Yet even the currently predominant data-driven approaches in AI seem to be lacking humans' unique ability to solve wide ranges of problems. This situation begs the question of the existence of principles that underlie general problem-solving capabilities. We approach this question through the mathematical formulation of analogies across different problems and solutions. We focus in particular on problems that could be represented as tree-like structures. Most importantly, we adopt a category-theoretic approach in formalising tree problems as categories, and in proving the existence of equivalences across apparently unrelated problem domains. We prove the existence of a functor between the category of tree problems and the category of solutions. We also provide a weaker version of the functor by quantifying equivalences of problem categories using a metric on tree problems.Comment: 10 pages, 4 figures, International Conference on Artificial General Intelligence (AGI) 201

    Mind before matter: reversing the arrow of fundamentality

    Full text link
    In this contribution to FQXi's essay contest 2018, I suggest that it is sometimes a step forward to reverse our intuition on "what is fundamental", a move that is somewhat reminiscent of the idea of noncommutative geometry. I argue that some foundational conceptual problems in physics and related fields motivate us to attempt such a reversal of perspective, and to take seriously the idea that an information-theoretic notion of observer ("mind") could in some sense be more fundamental than our intuitive idea of a physical world ("matter"). I sketch what such an approach could look like, and why it would complement but not contradict the view that the material world is the cause of our experience.Comment: Contribution to the 2018 FQXi essay contest "What is fundamental?

    Transit Timing and Duration Variations for the Discovery and Characterization of Exoplanets

    Full text link
    Transiting exoplanets in multi-planet systems have non-Keplerian orbits which can cause the times and durations of transits to vary. The theory and observations of transit timing variations (TTV) and transit duration variations (TDV) are reviewed. Since the last review, the Kepler spacecraft has detected several hundred perturbed planets. In a few cases, these data have been used to discover additional planets, similar to the historical discovery of Neptune in our own Solar System. However, the more impactful aspect of TTV and TDV studies has been characterization of planetary systems in which multiple planets transit. After addressing the equations of motion and parameter scalings, the main dynamical mechanisms for TTV and TDV are described, with citations to the observational literature for real examples. We describe parameter constraints, particularly the origin of the mass/eccentricity degeneracy and how it is overcome by the high-frequency component of the signal. On the observational side, derivation of timing precision and introduction to the timing diagram are given. Science results are reviewed, with an emphasis on mass measurements of transiting sub-Neptunes and super-Earths, from which bulk compositions may be inferred.Comment: Revised version. Invited review submitted to 'Handbook of Exoplanets,' Exoplanet Discovery Methods section, Springer Reference Works, Juan Antonio Belmonte and Hans Deeg, Eds. TeX and figures may be found at https://github.com/ericagol/TTV_revie

    Benchmark performance of low-cost Sb2Se3 photocathodes for unassisted solar overall water splitting

    Get PDF
    Determining cost-effective semiconductors exhibiting desirable properties for commercial photoelectrochemical water splitting remains a challenge. Herein, we report a Sb2Se3 semiconductor that satisfies most requirements for an ideal high-performance photoelectrode, including a small band gap and favourable cost, optoelectronic properties, processability, and photocorrosion stability. Strong anisotropy, a major issue for Sb2Se3, is resolved by suppressing growth kinetics via close space sublimation to obtain high-quality compact thin films with favourable crystallographic orientation. The Sb2Se3 photocathode exhibits a high photocurrent density of almost 30mAcm(-2) at 0V against the reversible hydrogen electrode, the highest value so far. We demonstrate unassisted solar overall water splitting by combining the optimised Sb2Se3 photocathode with a BiVO4 photoanode, achieving a solar-to-hydrogen efficiency of 1.5% with stability over 10h under simulated 1 sun conditions employing a broad range of solar fluxes. Low-cost Sb2Se3 can thus be an attractive breakthrough material for commercial solar fuel production. While photoelectrochemical water splitting offers an integrated means to convert sunlight to a renewable fuel, cost-effective light-absorbers are rare. Here, authors report Sb2Se3 photocathodes for high-performance photoelectrochemical water splitting devices

    Probing host pathogen cross-talk by transcriptional profiling of both Mycobacterium tuberculosis and infected human dendritic cells and macrophages

    Get PDF
    This study provides the proof of principle that probing the host and the microbe transcriptomes simultaneously is a valuable means to accessing unique information on host pathogen interactions. Our results also underline the extraordinary plasticity of host cell and pathogen responses to infection, and provide a solid framework to further understand the complex mechanisms involved in immunity to M. tuberculosis and in mycobacterial adaptation to different intracellular environments

    Star-forming cores embedded in a massive cold clump: Fragmentation, collapse and energetic outflows

    Full text link
    The fate of massive cold clumps, their internal structure and collapse need to be characterised to understand the initial conditions for the formation of high-mass stars, stellar systems, and the origin of associations and clusters. We explore the onset of star formation in the 75 M_sun SMM1 clump in the region ISOSS J18364-0221 using infrared and (sub-)millimetre observations including interferometry. This contracting clump has fragmented into two compact cores SMM1 North and South of 0.05 pc radius, having masses of 15 and 10 M_sun, and luminosities of 20 and 180 L_sun. SMM1 South harbours a source traced at 24 and 70um, drives an energetic molecular outflow, and appears supersonically turbulent at the core centre. SMM1 North has no infrared counterparts and shows lower levels of turbulence, but also drives an outflow. Both outflows appear collimated and parsec-scale near-infrared features probably trace the outflow-powering jets. We derived mass outflow rates of at least 4E-5 M_sun/yr and outflow timescales of less than 1E4 yr. Our HCN(1-0) modelling for SMM1 South yielded an infall velocity of 0.14 km/s and an estimated mass infall rate of 3E-5 M_sun/yr. Both cores may harbour seeds of intermediate- or high-mass stars. We compare the derived core properties with recent simulations of massive core collapse. They are consistent with the very early stages dominated by accretion luminosity.Comment: Accepted for publication in ApJ, 14 pages, 7 figure

    How to train surgical residents to perform laparoscopic roux-en-Y gastric bypass safely

    Get PDF
    Background As a result of increasing numbers of patients with morbid obesity there is a worldwide demand for bariatric surgeons. The Roux-en-Y gastric bypass, nowadays performed mostly laparoscopically (LRYGB), has been proven to be a highly effective surgical treatment for morbid obesity. This procedure is technically demanding and requires a long learning curve. Little is known about implementing these demanding techniques in the training of the surgical resident. The aim of this study was to evaluate the safety and feasibility of the introduction of LRYGB into the training of surgical residents. Methods All patients who underwent LRYGB between March 2006 and July 2010 were retrospectively analyzed. The procedure was performed by a surgical resident under strict supervision of a bariatric surgeon (group I) or by a bariatric surgeon (group II). The primary end point was the occurrence of complications. Secondary end points included operative time, days of hospitalization, rate of readmission, and reappearance in the emergency department (ED) within 30 days. Results A total of 409 patients were found eligible for inclusion in the study: 83 patients in group I and 326 in group II. There was a significant difference in operating time (129 min in group I vs. 116 min in group II; p<0.001) and days of hospitalization. Postoperative complication rate, reappearance in the ED, and rate of readmission did not differ between the two groups. Conclusions Our data suggest that under stringent supervision and with sufficient laparoscopic practice, implementation of LRYGB as part of surgical training is safe and results in only a slightly longer operating time. Complication rates, days of hospitalization, and the rates of readmission and reappearance in the ED within 30 days were similar between the both groups. These results should be interpreted by remembering that all procedures in group I were performed in a training environment so occasional intervention by a bariatric surgeon, when necessary, was inevitable

    The Transcriptional Response of Drosophila melanogaster to Infection with the Sigma Virus (Rhabdoviridae)

    Get PDF
    Bacterial and fungal infections induce a potent immune response in Drosophila melanogaster, but it is unclear whether viral infections induce an antiviral immune response. Using microarrays, we examined the changes in gene expression in Drosophila that occur in response to infection with the sigma virus, a negative-stranded RNA virus (Rhabdoviridae) that occurs in wild populations of D. melanogaster. We detected many changes in gene expression in infected flies, but found no evidence for the activation of the Toll, IMD or Jak-STAT pathways, which control immune responses against bacteria and fungi. We identified a number of functional categories of genes, including serine proteases, ribosomal proteins and chorion proteins that were overrepresented among the differentially expressed genes. We also found that the sigma virus alters the expression of many more genes in males than in females. These data suggest that either Drosophila do not mount an immune response against the sigma virus, or that the immune response is not controlled by known immune pathways. If the latter is true, the genes that we identified as differentially expressed after infection are promising candidates for controlling the host's response to the sigma virus

    Target Region Selection Is a Critical Determinant of Community Fingerprints Generated by 16S Pyrosequencing

    Get PDF
    Pyrosequencing of 16S rRNA genes allows for in-depth characterization of complex microbial communities. Although it is known that primer selection can influence the profile of a community generated by sequencing, the extent and severity of this bias on deep-sequencing methodologies is not well elucidated. We tested the hypothesis that the hypervariable region targeted for sequencing and primer degeneracy play important roles in influencing the composition of 16S pyrotag communities. Subgingival plaque from deep sites of current smokers with chronic periodontitis was analyzed using Sanger sequencing and pyrosequencing using 4 primer pairs. Greater numbers of species were detected by pyrosequencing than by Sanger sequencing. Rare taxa constituted nearly 6% of each pyrotag community and less than 1% of the Sanger sequencing community. However, the different target regions selected for pyrosequencing did not demonstrate a significant difference in the number of rare and abundant taxa detected. The genera Prevotella, Fusobacterium, Streptococcus, Granulicatella, Bacteroides, Porphyromonas and Treponema were abundant when the V1–V3 region was targeted, while Streptococcus, Treponema, Prevotella, Eubacterium, Porphyromonas, Campylobacer and Enterococcus predominated in the community generated by V4–V6 primers, and the most numerous genera in the V7–V9 community were Veillonella, Streptococcus, Eubacterium, Enterococcus, Treponema, Catonella and Selenomonas. Targeting the V4–V6 region failed to detect the genus Fusobacterium, while the taxa Selenomonas, TM7 and Mycoplasma were not detected by the V7–V9 primer pairs. The communities generated by degenerate and non-degenerate primers did not demonstrate significant differences. Averaging the community fingerprints generated by V1–V3 and V7–V9 primers providesd results similar to Sanger sequencing, while allowing a significantly greater depth of coverage than is possible with Sanger sequencing. It is therefore important to use primers targeted to these two regions of the 16S rRNA gene in all deep-sequencing efforts to obtain representational characterization of complex microbial communities

    Functional conservation of the Drosophila hybrid incompatibility gene Lhr

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hybrid incompatibilities such as sterility and lethality are commonly modeled as being caused by interactions between two genes, each of which has diverged separately in one of the hybridizing lineages. The gene <it>Lethal hybrid rescue </it>(<it>Lhr</it>) encodes a rapidly evolving heterochromatin protein that causes lethality of hybrid males in crosses between <it>Drosophila melanogaster </it>females and <it>D. simulans </it>males. Previous genetic analyses showed that hybrid lethality is caused by <it>D. simulans Lhr </it>but not by <it>D. melanogaster Lhr</it>, confirming a critical prediction of asymmetry in the evolution of a hybrid incompatibility gene.</p> <p>Results</p> <p>Here we have examined the functional properties of <it>Lhr </it>orthologs from multiple Drosophila species, including interactions with other heterochromatin proteins, localization to heterochromatin, and ability to complement hybrid rescue in <it>D. melanogaster</it>/<it>D. simulans </it>hybrids. We find that these properties are conserved among most <it>Lhr </it>orthologs, including <it>Lhr </it>from <it>D. melanogaster</it>, <it>D. simulans </it>and the outgroup species <it>D. yakuba</it>.</p> <p>Conclusions</p> <p>We conclude that evolution of the hybrid lethality properties of <it>Lhr </it>between <it>D. melanogaster </it>and <it>D. simulans </it>did not involve extensive loss or gain of functions associated with protein interactions or localization to heterochromatin.</p
    corecore