5,267 research outputs found
MDL Convergence Speed for Bernoulli Sequences
The Minimum Description Length principle for online sequence
estimation/prediction in a proper learning setup is studied. If the underlying
model class is discrete, then the total expected square loss is a particularly
interesting performance measure: (a) this quantity is finitely bounded,
implying convergence with probability one, and (b) it additionally specifies
the convergence speed. For MDL, in general one can only have loss bounds which
are finite but exponentially larger than those for Bayes mixtures. We show that
this is even the case if the model class contains only Bernoulli distributions.
We derive a new upper bound on the prediction error for countable Bernoulli
classes. This implies a small bound (comparable to the one for Bayes mixtures)
for certain important model classes. We discuss the application to Machine
Learning tasks such as classification and hypothesis testing, and
generalization to countable classes of i.i.d. models.Comment: 28 page
Self-Modification of Policy and Utility Function in Rational Agents
Any agent that is part of the environment it interacts with and has versatile
actuators (such as arms and fingers), will in principle have the ability to
self-modify -- for example by changing its own source code. As we continue to
create more and more intelligent agents, chances increase that they will learn
about this ability. The question is: will they want to use it? For example,
highly intelligent systems may find ways to change their goals to something
more easily achievable, thereby `escaping' the control of their designers. In
an important paper, Omohundro (2008) argued that goal preservation is a
fundamental drive of any intelligent system, since a goal is more likely to be
achieved if future versions of the agent strive towards the same goal. In this
paper, we formalise this argument in general reinforcement learning, and
explore situations where it fails. Our conclusion is that the self-modification
possibility is harmless if and only if the value function of the agent
anticipates the consequences of self-modifications and use the current utility
function when evaluating the future.Comment: Artificial General Intelligence (AGI) 201
The \^G Search for Extraterrestrial Civilizations with Large Energy Supplies. IV. The Signatures and Information Content of Transiting Megastructures
Arnold (2005), Forgan (2013), and Korpela et al. (2015) noted that
planet-sized artificial structures could be discovered with Kepler as they
transit their host star. We present a general discussion of transiting
megastructures, and enumerate ten potential ways their anomalous silhouettes,
orbits, and transmission properties would distinguish them from exoplanets. We
also enumerate the natural sources of such signatures.
Several anomalous objects, such as KIC 12557548 and CoRoT-29, have
variability in depth consistent with Arnold's prediction and/or an asymmetric
shape consistent with Forgan's model. Since well motivated physical models have
so far provided natural explanations for these signals, the ETI hypothesis is
not warranted for these objects, but they still serve as useful examples of how
nonstandard transit signatures might be identified and interpreted in a SETI
context. Boyajian et al. 2015 recently announced KIC 8462852, an object with a
bizarre light curve consistent with a "swarm" of megastructures. We suggest
this is an outstanding SETI target.
We develop the normalized information content statistic to quantify the
information content in a signal embedded in a discrete series of bounded
measurements, such as variable transit depths, and show that it can be used to
distinguish among constant sources, interstellar beacons, and naturally
stochastic or artificial, information-rich signals. We apply this formalism to
KIC 12557548 and a specific form of beacon suggested by Arnold to illustrate
its utility.Comment: 25 pages, 10 figures. Accepted to Ap
Electron-phonon interaction in the solid form of the smallest fullerene C
The electron-phonon coupling of a theoretically devised carbon phase made by
assembling the smallest fullerenes C is calculated from first
principles. The structure consists of C cages in an {\it fcc} lattice
interlinked by two bridging carbon atoms in the interstitial tetrahedral sites
({\it fcc}-C). The crystal is insulating but can be made metallic by
doping with interstitial alkali atoms. In the compound NaC the
calculated coupling constant is 0.28 eV, a value much larger
than in C, as expected from the larger curvature of C. On the
basis of the McMillan's formula, the calculated =1.12 and a
assumed in the range 0.3-0.1 a superconducting T in the range 15-55 K is
predicted.Comment: 7 page
A Parameter Study of Classical Be Star Disk Models Constrained by Optical Interferometry
We have computed theoretical models of circumstellar disks for the classical
Be stars Dra, Psc, and Cyg. Models were constructed
using a non-LTE radiative transfer code developed by \citet{sig07} which
incorporates a number of improvements over previous treatments of the disk
thermal structure, including a realistic chemical composition. Our models are
constrained by direct comparison with long baseline optical interferometric
observations of the H emitting regions and by contemporaneous H
line profiles. Detailed comparisons of our predictions with H
interferometry and spectroscopy place very tight constraints on the density
distributions for these circumstellar disks.Comment: 10 figures,28 pages, accepted by Ap
Concurrent bariatric operations and association with perioperative outcomes: Registry based cohort study
AGI and the Knight-Darwin Law: why idealized AGI reproduction requires collaboration
Can an AGI create a more intelligent AGI? Under idealized assumptions, for a certain theoretical type of intelligence, our answer is: “Not without outside help”. This is a paper on the mathematical structure of AGI populations when parent AGIs create child AGIs. We argue that such populations satisfy a certain biological law. Motivated by observations of sexual reproduction in seemingly-asexual species, the Knight-Darwin Law states that it is impossible for one organism to asexually produce another, which asexually produces another, and so on forever: that any sequence of organisms (each one a child of the previous) must contain occasional multi-parent organisms, or must terminate. By proving that a certain measure (arguably an intelligence measure) decreases when an idealized parent AGI single-handedly creates a child AGI, we argue that a similar Law holds for AGIs
Time consistent discounting
A possibly immortal agent tries to maximise its summed discounted rewards over time, where discounting is used to avoid infinite utilities and encourage the agent to value current rewards more than future ones. Some commonly used discount functions lead to time-inconsistent behavior where the agent changes its plan over time. These inconsistencies can lead to very poor behavior. We generalise the usual discounted utility model to one where the discount function changes with the age of the agent. We then give a simple characterisation of time-(in)consistent discount functions and show the existence of a rational policy for an agent that knows its discount function is time-inconsistent
Electron correlation in C_(4N+2) carbon rings: aromatic vs. dimerized structures
The electronic structure of C_(4N+2) carbon rings exhibits competing
many-body effects of Huckel aromaticity, second-order Jahn-Teller and Peierls
instability at large sizes. This leads to possible ground state structures with
aromatic, bond angle or bond length alternated geometry. Highly accurate
quantum Monte Carlo results indicate the existence of a crossover between C_10
and C_14 from bond angle to bond length alternation. The aromatic isomer is
always a transition state. The driving mechanism is the second-order
Jahn-Teller effect which keeps the gap open at all sizes.Comment: Submitted for publication: 4 pages, 3 figures. Corrected figure
Artificial selection reveals the energetic expense of producing larger eggs
This is the final version of the article. Available from BioMed Central via the DOI in this record.BACKGROUND: The amount of resources provided by the mother before birth has important and long-lasting effects on offspring fitness. Despite this, there is a large amount of variation in maternal investment seen in natural populations. Life-history theory predicts that this variation is maintained through a trade-off between the benefits of high maternal investment for the offspring and the costs of high investment for the mother. However, the proximate mechanisms underlying these costs of reproduction are not well understood. Here we used artificial selection for high and low maternal egg investment in a precocial bird, the Japanese quail (Coturnix japonica) to quantify costs of maternal reproductive investment. RESULTS: We show that females from the high maternal investment lines had significantly larger reproductive organs, which explained their overall larger body mass, and resulted in a higher resting metabolic rate (RMR). Contrary to our expectations, this increase in metabolic activity did not lead to a higher level of oxidative damage. CONCLUSIONS: This study is the first to provide experimental evidence for metabolic costs of increased per offspring investment.The study was financially supported by the Swiss National Science Foundation (PP00P3 128386 and 458 PP00P3 157455 to BT)
- …
