1,895 research outputs found
Improved fire-resistant coatings
Water-base coatings containing potassium silicate show improvement in areas of quick air-drying, crack, craze, and abrasion resistance, adherence, and leach resistance. Coatings are useful as thermal-barrier layers in furnaces, and as general purpose fire resistant surfaces where vapor impermeability is not a requirement
Serum parathyroid hormone levels and renal handling of phosphorus in patients with chronic renal disease
In eight patients with advanced renal insufficiency (inulin clearance 1.4-9.1 ml/min), concentrations of serum calcium (S[Ca]) and phosphorus (S[P]) were maintained normal (S[Ca] > 9.0 mg/100 ml, (S[P] < 3.5 mg/100 ml) for at least 20 consecutive days with phosphate binding antacids and oral calcium carbonate. The initial serum levels of immunoreactive parathyroid hormone (S-PTH) were elevated in three (426-9230 pg/ml), normal in four (one after subtotal parathyroidectomy), and not available in one. The initial fractional excretion of filtered phosphorus was high in all and ranged from 0.45-1.05. Following sustained normo-calcemia and normo-phosphatemia, S-PTH was reduced below control levels in all patients; being normal in six and elevated in two. decreased below control levels in all patients; it remained high in six (of which five had normal S-PTH) and was normal in two (of which one had elevated S-PTH). The observed relationship between S-PTH and could either reflect the inability of the radioimmunoassay for PTH employed to measure a circulating molecular species of PTH which was present in which case the actual levels of S-PTH were higher than those measured, and/or it could be indicative of the presence of additional important factor(s) (other than S-PTH) which inhibit tubular reabsorption of phosphorus in advanced chronic renal failure. © 1972 by The Endocrine Society
SSME fuel preburner injector characterization
A project has been initiated at the Marshall Space Flight Center to determine if preburner inter- or intra-element mixture ratio maldistributions are the cause of temperature variations in the Space Shuttle Main Engine (SSME) High Pressure Fuel Turbopump (HPFTP) turbine inlet region. Temperature nonuniformity may contribute to the many problems experienced in this region. The project will involve high pressure cold-flow testing and Computational Fluid Dynamics (CFD) modeling
Detecting event-related recurrences by symbolic analysis: Applications to human language processing
Quasistationarity is ubiquitous in complex dynamical systems. In brain
dynamics there is ample evidence that event-related potentials reflect such
quasistationary states. In order to detect them from time series, several
segmentation techniques have been proposed. In this study we elaborate a recent
approach for detecting quasistationary states as recurrence domains by means of
recurrence analysis and subsequent symbolisation methods. As a result,
recurrence domains are obtained as partition cells that can be further aligned
and unified for different realisations. We address two pertinent problems of
contemporary recurrence analysis and present possible solutions for them.Comment: 24 pages, 6 figures. Draft version to appear in Proc Royal Soc
The environmental toxicant 2,3,7,8-tetrachlorodibenzo-p-dioxin disrupts morphogenesis of the rat pre-implantation embryo
© 2008 Hutt et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The definitive version was published in BMC Developmental Biology 8 (2008): 1, doi:10.1186/1471-213X-8-1.Environmental toxicants, whose actions are often mediated through the aryl hydrocarbon receptor (AhR) pathway, pose risks to the health and well-being of exposed species, including humans. Of particular concern are exposures during the earliest stages of development that while failing to abrogate embryogenesis, may have long term effects on newborns or adults. The purpose of this study was to evaluate the effect of maternal exposure to the AhR-specific ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the development of rat pre-implantation embryos with respect to nuclear and cytoskeletal architecture and cell lineage allocation.
We performed a systematic 3 dimensional (3D) confocal microscopy analysis of rat pre-implantation embryos following maternal exposure to environmentally relevant doses of TCDD. Both chronic (50 ng/kg/wk for 3 months) and acute (50 ng/kg and 1 μg/kg at proestrus) maternal TCDD exposure disrupted morphogenesis at the compaction stage (8–16 cell), with defects including monopolar spindle formation, f-actin capping and fragmentation due to aberrant cytokinesis. Additionally, the size, shape and position of nuclei were modified in compaction stage pre-implantation embryos collected from treated animals. Notably, maternal TCDD exposure did not compromise survival to blastocyst, which with the exception of nuclear shape, were morphologically similar to control blastocysts.
We have identified the compaction stage of pre-implantation embryogenesis as critically sensitive to the effects of TCDD, while survival to the blastocyst stage is not compromised. To the best of our knowledge this is the first in vivo study to demonstrate a critical window of pre-implantation mammalian development that is vulnerable to disruption by an AhR ligand at environmentally relevant doses.This research was supported by NIH/NIEHS-012916 (BKP), ESHE Fund (DFA), Hall Family Foundation (DFA and KJH) and Biomedical Research Training Grant KUMC (KJH)
Catalogues of voids as antihaloes in the local Universe
A recently proposed algorithm identifies voids in simulations as the regions associated with haloes when the initial overdensity field is negated. We apply this method to the real Universe by running a suite of constrained simulations of the 2M++ volume with initial conditions inferred by the BORG algorithm, along with the corresponding inverted set. Our 101 inverted and uninverted simulations, spanning the BORG posterior, each identify ∼150 000 ‘voids as antihaloes’ with mass exceeding 4.38 × 1011 M⊙ (100 particles) at z = 0 in a full-sky sphere of radius 155 Mpc h−1 around the Milky Way. We calculate the size function, volume filling fraction, ellipticity, central density, specific angular momentum, clustering, and stacked density profile of the voids, and cross-correlate them with those produced by VIDE on the same simulations. We make our antihalo and VIDE catalogues publicly available
NASA's Space Launch System: Systems Engineering Approach for Affordability and Mission Success
NASA is working toward the first launch of the Space Launch System, a new, unmatched capability for deep space exploration with launch readiness planned for 2019. Since program start in 2011, SLS has passed several major formal design milestones, and every major element of the vehicle has produced test and flight hardware. The SLS approach to systems engineering has been key to the program's success. Key aspects of the SLS SE&I approach include: 1) minimizing the number of requirements, 2) elimination of explicit verification requirements, 3) use of certified models of subsystem capability in lieu of requirements when appropriate and 4) certification of capability beyond minimum required capability
How clumpy is my image? Evaluating crowdsourced annotation tasks
13th UK Workshop on Computational Intelligence (UKCI), Guildford, UK, 9-11 September 2013This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.The use of citizen science to obtain annotations from multiple annotators has been shown to be an effective method for annotating datasets in which computational methods alone are not feasible. The way in which the annotations are obtained is an important consideration which affects the quality of the resulting consensus estimates. In this paper, we examine three separate approaches to obtaining scores for instances rather than merely classifications. To obtain a consensus score annotators were asked to make annotations in one of three paradigms: classification, scoring and ranking. A web-based citizen science experiment is described which implements the three approaches as crowdsourced annotation tasks. The tasks are evaluated in relation to the accuracy and agreement among the participants using both simulated and real-world data from the experiment. The results show a clear difference in performance between the three tasks, with the ranking task obtaining the highest accuracy and agreement among the participants. We show how a simple evolutionary optimiser may be used to improve the performance by reweighting the importance of annotators
Stimulus statistics shape oscillations in nonlinear recurrent neural networks.
Rhythmic activity plays a central role in neural computations and brain functions ranging from homeostasis to attention, as well as in neurological and neuropsychiatric disorders. Despite this pervasiveness, little is known about the mechanisms whereby the frequency and power of oscillatory activity are modulated, and how they reflect the inputs received by neurons. Numerous studies have reported input-dependent fluctuations in peak frequency and power (as well as couplings across these features). However, it remains unresolved what mediates these spectral shifts among neural populations. Extending previous findings regarding stochastic nonlinear systems and experimental observations, we provide analytical insights regarding oscillatory responses of neural populations to stimulation from either endogenous or exogenous origins. Using a deceptively simple yet sparse and randomly connected network of neurons, we show how spiking inputs can reliably modulate the peak frequency and power expressed by synchronous neural populations without any changes in circuitry. Our results reveal that a generic, non-nonlinear and input-induced mechanism can robustly mediate these spectral fluctuations, and thus provide a framework in which inputs to the neurons bidirectionally regulate both the frequency and power expressed by synchronous populations. Theoretical and computational analysis of the ensuing spectral fluctuations was found to reflect the underlying dynamics of the input stimuli driving the neurons. Our results provide insights regarding a generic mechanism supporting spectral transitions observed across cortical networks and spanning multiple frequency bands
- …