3,614 research outputs found

    Observations on the Overwintering Potential of the Striped Cucumber Beetle (Coleoptera: Chrysomelidae) in Southern Minnesota

    Get PDF
    The striped cucumber beetle, Acalymma vittatum (Fabricius) (Coleoptera: Chrysomelidae), is an important pest of cucurbit crops. However, the overwinter- ing capacity of this pest in temperate regions is poorly understood. In this study, the in-field survival of A. vittatum was examined during three consecutive winters. In addition, the supercooling points of A. vittatum were determined as an index of cold hardiness for adults. During each winter, the survival of adults decreased significantly through time, with no individuals surviving until spring. By comparing the supercooling points and in-field survival of adults to soil temperatures, it appears that winter temperatures in Minnesota are cold enough to induce freezing of the beetles. Moreover, a considerable amount of mortality occurred before minimum monthly soil temperatures dropped below the supercooling point of overwintering individuals, suggesting the occurrence of prefreeze mortality. An improved understanding of the response of A. vittatum to winter temperatures in temperate regions may aid in early season management of this pest

    Genetic Map of Bacteriophage [var phi]X174

    Get PDF
    Bacteriophage [var phi]X174 temperature-sensitive and nonsense mutations in eight cistrons were mapped by using two-, three-, and four-factor genetic crosses. The genetic map is circular with a total length of 24 × 10−4wt recombinants per progeny phage. The cistron order is D-E-F-G-H-A-B-C. High negative interference is seen, consistent with a small closed circular deoxyribonucleic acid molecule as a genome

    Official Publications at Texas A&M University: A Case Study in Cataloging Archival Material

    Get PDF
    Institutional reorganization and staffing changes at Texas A&M University's Cushing Library, which houses the university's archives, made necessary the cataloging of a substantial number of publications produced by different university agencies and departments, publications which had previously been largely inaccessible. The authors designed and implemented a plan to catalog thousands of pamphlets, reports, newsletters, conference proceedings and other material; a project that resulted in increased exposure and usage. This article outlines the development and ongoing refinement of the project. Undertaken in a cooperative spirit aimed at creating an integrated catalog of information resources, this project illustrates ways in which local practices can be improved through the use of technology

    Musculoskeletal education: a curriculum evaluation at one university

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The increasing burden of illness related to musculoskeletal diseases makes it essential that attention be paid to musculoskeletal education in medical schools. This case study examines the undergraduate musculoskeletal curriculum at one medical school.</p> <p>Methods</p> <p>A case study research methodology used quantitative and qualitative approaches to systematically examine the undergraduate musculoskeletal course at the University of Calgary (Alberta, Canada) Faculty of Medicine. The aim of the study was to understand the strengths and weaknesses of the curriculum guided by four questions: (1) Was the course structured according to standard principles for curriculum design as described in the Kern framework? (2) How did students and faculty perceive the course? (3) Was the assessment of the students valid and reliable? (4) Were the course evaluations completed by student and faculty valid and reliable?</p> <p><b>Results</b></p> <p>The analysis showed that the structure of the musculoskeletal course mapped to many components of Kern's framework in course design. The course had a high level of commitment by teachers, included a valid and reliable final examination, and valid evaluation questionnaires that provided relevant information to assess curriculum function. The curricular review identified several weaknesses in the course: the apparent absence of a formalized needs assessment, course objectives that were not specific or measurable, poor development of clinical presentations, small group sessions that exceeded normal 'small group' sizes, and poor alignment between the course objectives, examination blueprint and the examination. Both students and faculty members perceived the same strengths and weaknesses in the curriculum. Course evaluation data provided information that was consistent with the findings from the interviews with the key stakeholders.</p> <p>Conclusions</p> <p>The case study approach using the Kern framework and selected questions provided a robust way to assess a curriculum, identify its strengths and weaknesses and guide improvements.</p

    Antigen depot is not required for alum adjuvanticity

    Get PDF
    Alum adjuvants have been in continuous clinical use for more than 80 yr. While the prevailing theory has been that depot formation and the associated slow release of antigen and/or inflammation are responsible for alum enhancement of antigen presentation and subsequent T- and B-cell responses, this has never been formally proven. To examine antigen persistence, we used the chimeric fluorescent protein EαGFP, which allows assessment of antigen presentation in situ, using the Y-Ae antibody. We demonstrate that alum and/or CpG adjuvants induced similar uptake of antigen, and in all cases, GFP signal did not persist beyond 24 h in draining lymph node antigen-presenting cells. Antigen presentation was first detectable on B cells within 6–12 h of antigen administration, followed by conventional dendritic cells (DCs) at 12–24 h, then finally plasmacytoid DCs at 48 h or later. Again, alum and/or CpG adjuvants did not have an effect on the magnitude or sequence of this response; furthermore, they induced similar antigen-specific T-cell activation in vivo. Notably, removal of the injection site and associated alum depot, as early as 2 h after administration, had no appreciable effect on antigen-specific T- and B-cell responses. This study clearly rules out a role for depot formation in alum adjuvant activity

    Central Executive Dysfunction and Deferred Prefrontal Processing in Veterans with Gulf War Illness.

    Get PDF
    Gulf War Illness is associated with toxic exposure to cholinergic disruptive chemicals. The cholinergic system has been shown to mediate the central executive of working memory (WM). The current work proposes that impairment of the cholinergic system in Gulf War Illness patients (GWIPs) leads to behavioral and neural deficits of the central executive of WM. A large sample of GWIPs and matched controls (MCs) underwent functional magnetic resonance imaging during a varied-load working memory task. Compared to MCs, GWIPs showed a greater decline in performance as WM-demand increased. Functional imaging suggested that GWIPs evinced separate processing strategies, deferring prefrontal cortex activity from encoding to retrieval for high demand conditions. Greater activity during high-demand encoding predicted greater WM performance. Behavioral data suggest that WM executive strategies are impaired in GWIPs. Functional data further support this hypothesis and suggest that GWIPs utilize less effective strategies during high-demand WM

    Quantum trajectory equation for multiple qubits in circuit QED: Generating entanglement by measurement

    Full text link
    In this paper we derive an effective master equation and quantum trajectory equation for multiple qubits in a single resonator and in the large resonator decay limit. We show that homodyne measurement of the resonator transmission is a weak measurement of the collective qubit inversion. As an example of this result, we focus on the case of two qubits and show how this measurement can be used to generate an entangled state from an initially separable state. This is realized without relying on an entangling Hamiltonian. We show that, for {\em current} experimental values of both the decoherence and measurement rates, this approach can be used to generate highly entangled states. This scheme takes advantage of the fact that one of the Bell states is decoherence-free under Purcell decay.Comment: 7 pages, 4 figure
    corecore