62 research outputs found

    A statistical approach for predicting grassland degradation in disturbance-driven landscapes

    Get PDF
    Maintaining a land base that supports safe and realistic training operations is a significant challenge for military land managers which can be informed by frequent monitoring of land condition in relation to management practices. This study explores the relationship between fire and trends in tallgrass prairie vegetation at military and non -military sites in the Kansas Flint Hills. The response variable was the longterm linear trend (2001-2010) of surface greenness measured by MODIS NDVI using BFAST time series trend analysis. Explanatory variables included fire regime (frequency and seasonality) and spatial strata based on existing management unit boundaries. Several non-spatial generalized linear models (GLM) were computed to explain trends by fire regime and/or stratification. Spatialized versions of the GLMs were also constructed. For non-spatial models at the military site, fire regime explained little (4%) of the observed surface greenness trend compared to strata alone (7% - 26%). The non-spatial and spatial models for the non -military site performed better for each explanatory variable and combination tested with fire regime. Existing stratifications contained much of the spatial structure in model residuals. Fire had only a marginal effect on surface greenness trends at the military site despite the use of burning as a grassland management tool. Interestingly, fire explained more of the trend at the nonmilitary site and models including strata improved explanatory power. Analysis of spatial model predictors based on management unit stratification suggested ways to reduce the number of strata while achieving similar performance and may benefit managers of other public areas lacking sound data regarding land usage

    Unsupervised Category Learning with Integral-Dimension Stimuli

    Get PDF
    Despite the recent surge in research on unsupervised category learning, the majority of studies have focused on unconstrained tasks in which no instructions are provided about the underlying category structure. Relatively little research has focused on constrained tasks in which the goal is to learn pre-defined stimulus clusters in the absence of feedback. The few studies that have addressed this issue have focused almost exclusively on stimuli for which it is relatively easy to attend selectively to the component dimensions (i.e., separable dimensions). In the present study, we investigated the ability of participants to learn categories constructed from stimuli for which it is difficult, if not impossible, to attend selectively to the component dimensions (i.e., integral dimensions). The experiments demonstrate that individuals are capable of learning categories constructed from the integral dimensions of brightness and saturation, but this ability is generally limited to category structures requiring selective attention to brightness. As might be expected with integral dimensions, participants were often able to integrate brightness and saturation information in the absence of feedback – an ability not observed in previous studies with separable dimensions. Even so, there was a bias to weight brightness more heavily than saturation in the categorization process, suggesting a weak form of selective attention to brightness. These data present an important challenge for the development of models of unsupervised category learning

    Military training and fire regime impacts on tallgrass prairie vegetation degradation

    Get PDF
    The relationship between fire and long-term trends in tallgrass prairie vegetation was assessed at Fort Riley and Konza Prairie Biological Station (KPBS) in Kansas. Linear trends of surface greenness were previously estimated using BFAST and MODIS MOD13Q1 NDVI composite images from 2001 to 2010. To explain trends, fire frequency and seasonality (fire regime) was determined and each site was divided into spatial strata using administrative or management units. Generalized linear models (GLM) were used to explain trends by fire regime and/or stratification. Spatialized versions of GLMs were also computed address unexplained spatial components. Non-spatial models for FRK showed fire regime explained only 4% of trends compared to strata (7-26%). At KPBS, fire regime and spatial stratification explained 14% and 39%, respectively. At both sites, improvements in performance were minimal using both fire and strata as explanatory variables. Model spatialization resulted in a 5% improvement at FRK, but with weak spatial structure in the residuals, and was not necessary at KPBS as the existing stratification most of the spatial structure in model residuals. All models at KPBS performed better for each explanatory variable and combination tested. Fire has only a marginal effect on vegetation trends at FRK despite its widespread use as a grassland management tool to improve vegetation health, and explains much more of the trends at KPBS. Analysis of predictors from spatial models with existing stratification yielded an approach with fewer strata but similar performance and may provide insight about additional explanatory variables omitted from this analysis

    Identifying Highly Connected Counties Compensates for Resource Limitations when Evaluating National Spread of an Invasive Pathogen

    Get PDF
    Surveying invasive species can be highly resource intensive, yet near-real-time evaluations of invasion progress are important resources for management planning. In the case of the soybean rust invasion of the United States, a linked monitoring, prediction, and communication network saved U.S. soybean growers approximately $200 M/yr. Modeling of future movement of the pathogen (Phakopsora pachyrhizi) was based on data about current disease locations from an extensive network of sentinel plots. We developed a dynamic network model for U.S. soybean rust epidemics, with counties as nodes and link weights a function of host hectarage and wind speed and direction. We used the network model to compare four strategies for selecting an optimal subset of sentinel plots, listed here in order of increasing performance: random selection, zonal selection (based on more heavily weighting regions nearer the south, where the pathogen overwinters), frequency-based selection (based on how frequently the county had been infected in the past), and frequency-based selection weighted by the node strength of the sentinel plot in the network model. When dynamic network properties such as node strength are characterized for invasive species, this information can be used to reduce the resources necessary to survey and predict invasion progress

    Is Pressure Stressful? The Impact of Pressure on the Stress Response and Category Learning

    Get PDF
    We examine the basic question of whether pressure is stressful. We propose that when examining the role of stress or pressure in cognitive performance it is important to consider the type of pressure, the stress response, and the aspect of cognition assessed. In Experiment 1, outcome pressure was not experienced as stressful but did lead to impaired performance on a rule-based (RB) category learning task and not a more procedural information-integration (II) task. In Experiment 2, the addition of monitoring pressure resulted in a modest stress response to combined pressure and impairment on both tasks. Across experiments, higher stress appraisals were associated with decreased performance on the RB, but not the II, task. In turn, higher stress-reactivity (heart rate) was associated with enhanced performance on the II, but not the RB, task. This work represents an initial step towards integrating the stress-cognition and pressure-cognition literatures and suggests that integrating these fields may require consideration of the type of pressure, the stress-response, and the cognitive system mediating performance

    Is Pressure Stressful? The Impact of Pressure on the Stress Response and Category Learning

    Get PDF
    We examine the basic question of whether pressure is stressful. We propose that when examining the role of stress or pressure in cognitive performance it is important to consider the type of pressure, the stress response, and the aspect of cognition assessed. In Experiment 1, outcome pressure was not experienced as stressful but did lead to impaired performance on a rule-based (RB) category learning task and not a more procedural information-integration (II) task. In Experiment 2, the addition of monitoring pressure resulted in a modest stress response to combined pressure and impairment on both tasks. Across experiments, higher stress appraisals were associated with decreased performance on the RB, but not the II, task. In turn, higher stress-reactivity (heart rate) was associated with enhanced performance on the II, but not the RB, task. This work represents an initial step towards integrating the stress-cognition and pressure-cognition literatures and suggests that integrating these fields may require consideration of the type of pressure, the stress-response, and the cognitive system mediating performance

    Identification of windbreaks in Kansas using object-based image analysis, GIS techniques and field survey

    Get PDF
    Windbreaks are valuable resources in conserving soils and providing crop protection in Great Plains states in the US. Currently, Kansas has no up-to date inventory of windbreaks. The goal of this project was to assist foresters with future windbreak renovation planning and reporting, by outlining a series of semi-automated digital image processing methods that rapidly identify windbreak locations. There were two specific objectives of this research. First, to develop semi-automated methods to identify the location of windbreaks in Kansas, this can be applied to other regions in Kansas and the Great Plains. We used a remote sensing technique known as object-based image analysis (OBIA) to classify windbreaks visible in the color aerial imagery of National Agriculture Imagery Program. We also combined GIS techniques and field survey to complement OBIA in generating windbreak inventory. The techniques successfully located more than 4500, windbreaks covering an approximate area of 2500, hectares in 14 Kansas counties. The second purpose of this research is to determine how well the results of the automated classification schemes match with other available windbreak data and the selected sample collected in the field. The overall accuracy of OBIA method was 58.97 %. OBIA combined with ‘heads up’ digitizing and field survey method yielded better result in identifying and locating windbreaks in the studied counties with overall accuracy of 96 %

    Information Seeking Behaviors, Attitudes, and Choices of Academic Physicists

    Get PDF
    Physicists in academic institutions utilize a variety of resources and strategies to seek, find, and use scholarly information and news. Using a sample of physicists, researchers surveyed 182 students and faculty at seven Canadian university institutions to explore self-perceived success rates, resources consulted, databases used, and use of social media and citation management systems. To complement the survey, 11 follow up interviews/focus groups were completed with participants to further uncover information-seeking behaviors, choices, strategies, and feelings around keeping up to date with information needs. According to survey results, a minority of physicists (15.4%) acknowledged that they were successfully keeping up to date. However, a significant number of physicists (28.6%) indicated that they were unsuccessful and could do better in remaining current with information needs. Co-investigators, using qualitative analyses, identified four emergent themes: (1) There are “too many papers – and not enough time” to effectively search, evaluate and read scholarly papers of interest; (2) Staying up to date is important especially in competitive research areas; (3) Graduate students seek information differently than faculty and experienced researchers; and (4) The arXiv database is important to many physicists. Additional minor themes included physics-related publishing is constantly evolving; physicists use a variety of information-seeking behaviors; and, information-seeking methods can differ between physics subdisciplines. This study aims to shed light on opportunities for academic librarians to identify and meet physicists’ evolving information behaviors, attitudes, choices, and needs

    Epitope-specific antibody responses differentiate COVID-19 outcomes and variants of concern

    Get PDF
    BACKGROUND. The role of humoral immunity in COVID-19 is not fully understood, owing, in large part, to the complexity of antibodies produced in response to the SARS-CoV-2 infection. There is a pressing need for serology tests to assess patient-specific antibody response and predict clinical outcome. METHODS. Using SARS-CoV-2 proteome and peptide microarrays, we screened 146 COVID-19 patients’ plasma samples to identify antigens and epitopes. This enabled us to develop a master epitope array and an epitope-specific agglutination assay to gauge antibody responses systematically and with high resolution. RESULTS. We identified linear epitopes from the spike (S) and nucleocapsid (N) proteins and showed that the epitopes enabled higher resolution antibody profiling than the S or N protein antigen. Specifically, we found that antibody responses to the S-811–825, S-881–895, and N-156–170 epitopes negatively or positively correlated with clinical severity or patient survival. Moreover, we found that the P681H and S235F mutations associated with the coronavirus variant of concern B.1.1.7 altered the specificity of the corresponding epitopes. CONCLUSION. Epitope-resolved antibody testing not only affords a high-resolution alternative to conventional immunoassays to delineate the complex humoral immunity to SARS-CoV-2 and differentiate between neutralizing and non-neutralizing antibodies, but it also may potentially be used to predict clinical outcome. The epitope peptides can be readily modified to detect antibodies against variants of concern in both the peptide array and latex agglutination formats. FUNDING. Ontario Research Fund (ORF) COVID-19 Rapid Research Fund, Toronto COVID-19 Action Fund, Western University, Lawson Health Research Institute, London Health Sciences Foundation, and Academic Medical Organization of Southwestern Ontario (AMOSO) Innovation Fund

    Large-scale interaction profiling of PDZ domains through proteomic peptide-phage display using human and viral phage peptidomes

    Get PDF
    The human proteome contains a plethora of short linear motifs (SLiMs) that serve as binding interfaces for modular protein domains. Such interactions are crucial for signaling and other cellular processes, but are difficult to detect because of their low to moderate affinities. Here we developed a dedicated approach, proteomic peptide-phage display (ProP-PD), to identify domain-SLiM interactions. Specifically, we generated phage libraries containing all human and viral C-terminal peptides using custom oligonucleotide microarrays. With these libraries we screened the nine PSD-95/ Dlg/ZO-1 (PDZ) domains of human Densin-180, Erbin, Scribble, and Disks large homolog 1 for peptide ligands. We identified several known and putative interactions potentially relevant to cellular signaling pathways and confirmed interactions between fulllength Scribble and the target proteins β-PIX, plakophilin-4, and guanylate cyclase soluble subunit a-2 using colocalization and coimmunoprecipitation experiments. The affinities of recombinant Scribble PDZ domains and the synthetic peptides representing the C termini of these proteins were in the 1- to 40-μM range. Furthermore, we identified several well-established host-virus protein- protein interactions, and confirmed that PDZ domains of Scribble interact with the C terminus of Tax-1 of human T-cell leukemia virus with micromolar affinity. Previously unknown putative viral protein ligands for the PDZ domains of Scribble and Erbin were also identified. Thus, we demonstrate that our ProP-PD libraries are useful tools for probing PDZ domain interactions. The method can be extended to interrogate all potential eukaryotic, bacterial, and viral SLiMs and we suggest it will be a highly valuable approach for studying cellular and pathogen-host protein-protein interactions
    corecore