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Abstract Windbreaks are valuable resources in conserving soils and providing crop protection in 

Great Plains states in the US. Currently, Kansas has no up-to date inventory of windbreaks. The 

goal of this project was to assist foresters with future windbreak renovation planning and 

reporting, by outlining a series of semi-automated digital image processing methods that rapidly 

identify windbreak locations. There were two specific objectives of this research. First, to 

develop semi-automated methods to identify the location of windbreaks in Kansas, this can be 

applied to other regions in Kansas and the Great Plains. We used a remote sensing technique 

known as object-based image analysis (OBIA) to classify windbreaks visible in the color aerial 

imagery of National Agriculture Imagery Program. We also combined GIS techniques and field 

survey to complement OBIA in generating windbreak inventory. The techniques successfully 

located more than 4500, windbreaks covering an approximate area of 2500, hectares in 14 

Kansas counties. The second purpose of this research is to determine how well the results of the 

automated classification schemes match with other available windbreak data and the selected 

sample collected in the field. The overall accuracy of OBIA method was 58.97 %. OBIA 

combined with ‘heads up’ digitizing and field survey method yielded better result in identifying 

and locating windbreaks in the studied counties with overall accuracy of 96 %.  

 

Keywords Shelterbelts, Soil conservation, Crop protection, Kansas, Great plains 

 

1. INTRODUCTION 

 Windbreaks provide a number of environmental benefits for semi-arid regions throughout 

the world. Also known as shelterbelts or living fence, they are valuable resources for conserving 

soil and providing crop protection in Kansas, as well as in other Great Plains states (Brandle et 

al., 2004). The primary function of windbreaks is to reduce wind velocity and offer protection 

from the severe weather of the Great Plains. Windbreaks also provide wildlife habitat, sources of 

fuel and fodder, provide recreational opportunities and improve energy efficiency for farmsteads 

(Cable, 1999; SAF, 2008). With the change in the agricultural landscape, the functional value of 
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windbreaks is also changing in North American Midwest. Studies have shown that windbreaks 

play important role in livestock industry and its operation. They are beneficial in protecting 

young animals from cold during winter and spring, help increase their feeding efficiency, protect 

feedlots, pastures and calving areas (Quam, V et al., 1994; Tyndall 2009). Windbreaks are in 

demand in the Great Plains also to mitigate odor from livestock industry and for aesthetic appeal 

of agricultural lands (Tyndall 2009; Grala and Tyndall, 2010) and efforts to renovate older 

windbreaks have increased in recent years (Atchison et al.,2010).  

The first major planting of windbreaks in the United States occurred during the1930’s in 

response to the Dust Bowl (Read 1958; Droze, 1977; Brandle et al., 2004). Through the Prairie 

States Forestry Project (PSFP; 1935-1942), 145 to 200 million trees and shrubs were planted into 

30,000 shelterbelts, which totaled 18,600 miles in length from the Canadian border of North 

Dakota south to the Texas Panhandle (Read, 1958, Droze, 1977; Croker, 1991).  

Assessment of the size, condition and location of windbreaks since the dustbowls days 

has been marginal at best, as USDA Forest Service Forest Inventory and Analysis Program 

measurements did not capture the majority of the resources. Evaluations of the PSFP efforts in 

1954 reported 42 percent of the windbreaks surveyed in good or excellent condition, 31 percent 

fair, and 19 percent poor. The remaining 8 percent had been removed (Read, 1958). Sorenson 

and Marotz (1977) expressed concerns that windbreaks in Kansas were being removed and not 

replaced estimating a 20% loss between 1962 and 1970. Due to the introduction of irrigation 

systems in the 70s, a 1980 USDA report documented 119 windbreaks removed in 32 Kansas 

counties. Castonguay and Hansen (1984) reported that wooded stripes and windbreaks in Kansas 

covered approximately 136,000 hectares and were more than 54,000 miles long. In 1992, Natural 

Resource Conservation Service (NRCS) Natural Resource Inventory (NRI) found 78,000 

windbreaks in the state totaling 46,134 hectares with a collective length of 20,000 miles. 

Thirteen percent were found to be in excellent condition, 38 percent good , 34 percent fair and 15 

percent poor (USDA,1994). In spite of an educational campaign and the conservation efforts by 

government agencies the number of windbreaks on the Great Plains has been decreasing and 

their condition is deteriorating (Cable, 1999). The most recent windbreak assessment in Kansas 

occurred through the Great Plains Initiative in 2008 and 2009, which estimated 289,577 

windbreaks stretching 43,436 miles providing wind protection to 1.2 million acres of land 

(Atchison et al., 2010). Though the establishment of new field windbreaks to address windblown 
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soil erosion has become passé, Atchison et al (2010) reported 2.9 million acres of cultivated 

cropland in Kansas (12%) exceeds tolerable limits for soil erosion. The tolerable limit is around 

1.3 tons/acre/year (NRI NRCS 2010). 

Current drought and projections for continuing drought associated with climate change 

combined with a possible move back to dry-land farming as the Ogallala aquifer is depleting, all 

point to the important conservation role field windbreaks offer to the Great Plains. Yet, there is 

little good science to efficiently document windbreak location, size, or condition. Therefore, it is 

now timely to build upon previous work of NRCS and additional windbreak research projects to 

develop methods for the rapid identification of windbreak location and assess their condition 

while promoting their important role as a conservation tool in the Great Plains.  

 

2. PURPOSE AND OBJECTIVES OF THE STUDY  

The purposes of this research are twofold. First, we aim to develop semi-automated 

methods to identify the location of windbreaks in Kansas that can be applied to other 

counties/regions in Kansas and the Great Plains. To achieve this goal, we used a remote sensing 

approach based on Object-Based Image Analysis (OBIA) to classify windbreaks visible in the 

color aerial imageries of 2008/2010/2012 National Agriculture Imagery Program (NAIP). 

Attributes from four spectral bands (blue, green, red, and near infrared) in the NAIP imagery 

were used in the segmentation and classification process.  

The second purpose of this research is to determine how well the results of the automated 

classification schemes match with other available windbreak data and the selected sample 

collected in the field.  

 

3. STUDY AREA  

The study area consists of 14 counties from the western Kansas Forest District (Figure 1). 

Out of the fourteen, seven counties are associated with Coronado Crossing Resource 

Conservation and Development Council (RC & D). They are Ford, Clark, Gray, Haskell, 

Hodgeman, Meade, and Seward. The other seven counties are from Smoky Hill region and they 

are Wallace, Logan, Gove, Trego, Ellis, Russell and Ellsworth. Ford County served as the pilot 

county for the method development. The methods developed were applied in the rest of the 

counties in the study area.  
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Agricultural cropland dominates the land cover within these counties, while mixed or 

short grass prairies make the majority of native vegetation (Goodin et al., 2002). Land uses 

related to the cattle industry also make a major part of the landscape with many areas being used 

as grazing land, livestock feed production and large-scale feedlots (Harrington, 2001).  

 

 

 

FIGURE 1: KANSAS REFERENCE MAP AND STUDY AREA WITHIN KANSAS FOREST 

SERVICE DISTRICTS  

4. METHODS 

4.1 Remote sensing for feature extraction  

 Remote sensing is commonly used for the identification, extraction, and classification of 

Land Use/Land Cover (LULC) types (Quattrochi et al., 1989; Koch et al., 2007). Extracting 

thematic information from imagery is typically accomplished through supervised or 

unsupervised classification approaches (Jensen 2005; Richards and Xiuping 2005). Both 

supervised and unsupervised classification methods have traditionally been accomplished on a 

per-pixel basis. Per pixel classification takes into account only the spectral value of a single 
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pixel, which limits its capability to identify ‘features’ and process very high resolution data 

(Jensen 2005). More recently, object-based classification methods have been gaining in 

popularity. Object-based classification groups homogeneous pixels through a segmentation 

process and converts them to multi-pixel shapes that later become the basis for classification 

(Jensen 2005). 

4.2 Object-Based Image Analysis (OBIA) 

 Object-based classification considers shape and context of landscape features or objects 

along with the position, size and spectral characteristics of individual objects during 

classification (Jensen 2005; Blaschke 2010). Essentially, object-based classification allows a 

classification scheme to be based on the shape of objects or features rather than simply the 

spectral reflectance of single pixel (Baatz et al., 2004). 

 Often, object-based classification has shown its usefulness in classifying entire images 

and also for single feature extraction. Using certain spatial and spectral criteria, it is the objective 

of this research to isolate windbreaks from all other land cover features and assess their condition 

using different spectral and textural properties. By taking advantage of the unique ability of 

object-based classification to classify features based on their shape, windbreak features should be 

easily distinguished from all other land cover features that share similar spectral properties. In 

addition, using this automated technique it should help decrease the amount of time required to 

inventory windbreaks by eliminating much of the field survey methods employed by Read 

(1958).  

The non-spectral classification criteria are crucial for accurate classification of windbreaks for 

two reasons. First, windbreaks are usually linear strips of tree plantings. A riparian forest area 

would exhibit similar spectral reflectance characteristics and make it difficult to distinguish it 

from a windbreak without first considering some shape criteria in the classification. Second, 

object-based classification software package we are using allow for the isolation of features of 

interest.This means that, based on certain shape and spectral parameter settings, one can 

eliminate features in the image that are not relevant before beginning the classification process, 

resulting in more efficient classification and image processing times. 

4.2.1. Image preprocessing  

The images used in this study were acquired from the 2008/2010/2012 NAIP. NAIP 

imagery has spatial and radiometric resolutions of 1 meter and 8 bits, respectively. Each image is 
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multispectral in nature, and contains spectral data from four bands of the electromagnetic 

spectrum: blue (band 1), green (band 2), red (band 3), and near infrared (NIR) (band 4). The 

NAIP imageries were collected during the growing season (Williams and Davis 2013). Each 

NAIP image was resampled using the nearest neighbor technique at a factor of 6 to reduce image 

file size and speed computer processing (Parker et al., 1983; Dodgson, 1992).  

4.2.2. Image segmentation, segment merging and thresholding 

 The ENVI Zoom 4.5 Feature Extraction Module (ITT Visual Information Solutions, 

Boulder, Colorado), which was used in this research, uses an edge-based algorithm developed by 

Robinson et al., (2002) to segment imagery. However, little research has been published using 

this software. (ITT Visual Information Solutions 2008). Several segmentation methods are 

available that can be used to isolate homogeneous pixels into proper objects. Here, an edge-based 

segmentation method and Support Vector Machine (SVM) classifier were applied using the 

ENVI Zoom 4.5 Feature Extraction Module (ITT Visual Information Solutions, 2008). The edge-

based segmentation algorithm tends to operate faster than other approaches, such as bottom-up 

region merging, because it requires only scale level as an input parameter. Scale level is an area 

measure that determines the size of objects to be created. Scale parameter values range from 0 to 

100 with segments decreasing in size as they move closer to 0. We used a scale level range of 

70-80. A county with longer windbreaks needed larger scale level value for segmentation. 

Similarly, if a county contains several small farmstead windbreaks scale parameters would need 

to be decreased to reduce the generalization of those windbreaks. County specific scale level 

range was also useful in differentiating windbreaks with riparian area, which has similar spectral 

properties. The scale level range of 70 -80 adequately defined segments between the windbreak 

and surrounding LULC types in the study area.  

Segment merging, based on a Full Lambda-Schedule algorithm (Robinson et al. 2002) 

was then applied to identify and combine neighboring objects with similar spatial, spectral, and 

textural properties. After experimentation, a lambda value ranging from 50-60 was found to be 

most effective at merging segments within windbreaks while keeping them distinct from 

neighboring LULC types.  

In addition to image segmentation and merging, a technique called thresholding was used 

to eliminate computed objects with mean spectral values that were not essential for identifying 

windbreaks. For this project, the only land use/land cover type of concern is the windbreak 
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vegetation, so elimination of impervious features such as roads, houses, bare soil, and parking 

lots makes the process of correctly defining classes for the remaining vegetation types much 

simpler. Visual analysis showed that a minimum band threshold of 90 eliminated most 

impervious features. After thresholding, however, several non-windbreak vegetation LULC 

types (e.g., riparian areas, forest patches and croplands) remained in the image.  

Using the segmentation parameters discussed previously generated thousands of objects 

in each county. This is largely because fragmentation within the classified featured class is very 

well captured by object-based approach. A larger-scale view (1:35,000) of several segmented 

objects within the study area is shown in Figure 2. Areas in white contain no data as they were 

masked out during the thresholding process. 

 

FIGURE 2: PORTION OF THE SEGEMENTED IMAGE OF VEGETATIVE FEATURES IN 

CLARK COUNTY (1:35,000 SCALE).THE WHITE SPACE REPRESENTS THE FEATURES 

REMOVED DURING THRESHOLDING PROCESS. CIRCLES  REPRESENTS CROP FIELD 

WITH PIVOT IRRIGATION SYSTEMS. THE LINE  REPRESENTS WINDBREAKS. 

REMAINING GREY PATCHES REPRESENTS EITHER TREE STANDS, SHRUBS, 

RIPARIAN AREA AND/OR SMALL FOREST PATCHES.  

4.2.3. Image classification  

After unwanted regions of the image were eliminated, attributes for use in classification 

were computed. These image attributes included those related to spatial geometry (e.g., area, 

length, roundness), spectral characteristics (e.g., pixel brightness values within objects), texture 
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(e.g., measures of pixel variance and range), and band ratio (e.g., hue, saturation, and intensity of 

pixel values within objects). Object classification, using a supervised approach, followed the 

export of segments and their associated attributes. After inspecting the post-thresholding image, 

a set of custom classes was created to drive the supervised classification process (Table 1). 

Training sites were then established for each of the six classes.  

 

TABLE 1: LANDUSE/LANDCOVER (LULC) CATEGORIES USED IN THE 

CLASSIFICATION AND THEIR DESCRIPTION  

LULC Type Description  

Crops Live row crops including center pivot 

irrigation land  

Tree Stands Individual stands of trees/shrubs not linear in 

nature and not near water feature 

Riparian  Long irregularly shaped stands of trees 

bordering water features  

Windbreaks Linear strips of trees planted near farm houses 

and crop fields likely to have jagged edges 

conforming to the shape of outer edge trees 

Manicured 

Landscapes  

Vegetative features under human 

management such as golf courses, lawns 

baseball fields, soccer fields, football fields 

Ditches Long linear features running parallel to roads 

and rail road tracks containing few trees and 

smooth edges 

 

The Discrete Capability Index (DCI) was used to select the optimal set of object 

attributes for classifying the features that remained after thresholding (ITT Visual Information 

Solutions, 2008).  

The final step in this object-based image classification involved using the SVM algorithm 

with a radial basis function (RBF) kernel. SVM uses a training set of instance-label pairs to map 

vectors into a possibly infinite number of spatial dimensions by the function Φ (Hsu et al., 
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2008). The SVM algorithm then uses optimization methods to divide numeric attributes into 

upper and lower margins based on a set number of hyper-planes that split the data into their 

respective classes (Huang and Zhang, 2008; Hsu et al., 2008). Another classification algorithm 

often used in object-based classifications, K Nearest Neighbor, was avoided here for two primary 

reasons: (1) windbreaks are not distributed in a uniform manner across the landscape, so similar 

nearby features can't reliably be classified as windbreaks, and (2) misleading results would likely 

result given that very large areas were masked out of the image during thresholding, where 

objects containing no similar spectral properties consistent with that of a windbreak were 

excluded from analysis.  

4.2.4. Accuracy Assessment  

To assess the accuracy of the object-based windbreak classification using a traditional 

error matrix approach, a number of random sample points within each of the six supervised 

classification-training sites were generated. The proper number of random samples was 

determined using the equation from Fitzpatrick-Lins (1981). Fitzpatrick-Lins, K. 1981. 

Congalton (1991) and Congalton and Green (1999) suggest that each class have at least 50 

random points when dealing with large areas (i.e., 1 million ha or more), so each class was 

assigned at least 50 random points in order to construct the error matrix. Once random samples 

were generated within each class, the error matrix was populated by inspecting the original NAIP 

image in the area of each random point. Knowledge-based interpretation of LULC features was 

used to determine if the object-based classification classes matched the actual LULC visible in 

the aerial photograph. Because the windbreak category was the only class for which accuracy 

was relevant, a 2 x 2 error matrix of non-windbreak and windbreak classes was constructed 

(Table 2).  

Producer and user accuracies for each class were calculated after the error matrix was 

populated. Finally, the Kappa value was calculated to provide an estimate of how much better 

the object-based classification performed relative to a random assignment of classes to each 

object (Jensen 2005). 

 

TABLE 2: ERROR MATRIX COMPILED FROM A RANDOM DISTRIBUTION OF 

SAMPLE POINTS FOR NON-WINDBREAK (NWB) AND WINDBREAK (WB) CLASSES 

FROM ALL FOURTEEN COUNTIES  
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 NWB WB Row Total User Accuracy 

NWB 724 454 1178 61.46% 

WB 216 239 455 52.52% 

Column total 940 693 1633  

Producer Accuracy 77.02%  Overall Accuracy 58.97% 

Kappa = 0.121; SE of kappa = 0.024; 95% confidence interval: 0.074 - to 0.167 

  

 Accuracy assessment help quantify how good a job the classifier did. In our case, 

accuracy assessment and kappa value are low. The strength of agreement is considered 

satisfactory. This satisfactory result could be because of the limitations of the OBIA using the 

ENVI Zoom 4.5 software. The details of the limitation are discussed in the section below.  

 

4.2.5. Limitations of OBIA using The ENVI Zoom 4.5 

 We re-sampled the original image to reduce the size of the image and to make it 

compatible for the software. On one hand, it helped the classification process by transforming the 

feature of interest, windbreaks, into more homogeneous areas to facilitate the image 

segmentation. However, the segmentation process failed to identify the younger windbreaks, 5 

years or younger due to resampling. The other issue related to this method is demarcation of the 

proper boundary of the windbreak. The boundary of the objects was inconsistent with that of 

actual windbreak features on the ground. When examining object-based results over the original 

NAIP image it was evident that some windbreaks were not captured in their entirety (Figure 3). 

Because a resample product was being used for image segmentation and windbreak 

classification, the segmentation process had difficulty recognizing very poor condition areas 

within a larger windbreak feature. This is due to the drastic change in spectral reflectance 

between a densely canopied area in windbreak and that of a degraded area where snags, gaps, 

and soils was sometimes visible. Figure 3 displays a subset of the Ford County image where the 

segmentation process defined the border of a dense windbreak very well compared to another 

site where an inaccurate border was identified for a degraded windbreak.  
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   (A)  (B) 

FIGURE 3: ACCURATE (A) AND INACCURATE (B) WINDBREAK BORDER 

ASSIGNMENTS  

  

 To correct the error and complement the shortcomings of ENVI Zoom software and 

OBIA method we used various tools and techniques in ArcGIS.   

 

4.3 Post classification process 

4.3.1 Heads-up digitization, boundary editing and area calculation in ArcGIS  

 Heads-up digitization is a process of converting the geographic features (windbreaks) 

using a raster data (Original NAIP imagery, 1m resolution) into vectors by tracing a mouse over 

features displayed on a computer monitor in ArcGIS (ESRI, 2011). We used this method to 

create windbreaks that were missed during the classification process. Heads-up digitizing was 

also helpful in capturing younger windbreaks, which were missed because of the re-sampling 

done during preprocessing of images. This method complemented the shortcomings of ENVI 

Zoom software and was one of the few available options to generate complete inventory of the 

windbreaks in the study area. Digitizing the image to include missed windbreaks is far less time 

consuming and cost effective as compared to visiting and identifying each of the windbreaks on 

the ground. 

We also used the editor tool and a smoothing technique in ArcGIS to merge the fragmented 

windbreaks and correct the boundaries demarcation.  

  

4.4. Field Survey  

 Remote sensing accuracy assessments usually, if not always, require the use of ground 

truth data for comparison purposes. To validate our results we visited 10-12 % percent of the 
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windbreaks identified through image analysis in each county. The other purpose of the field 

survey was to identify windbreak condition on the ground and their primary function. We visited 

more than 300 windbreaks in the field to collect information. Published in the Great Plains 

initiative Inventory Project Guide 1.0 (2008), foresters developed a set of criteria that are used 

when performing field surveys of windbreaks. We used the same criteria to collect the ground 

information, such as primary function, condition, length and perimeter of windbreaks. Many of 

the windbreaks were located on private property; therefore, prior permission from the 

landowners was obtained to access the windbreaks in the field.   

 

5. RESULTS AND DISCUSSION  

Object-based approach to classifying windbreaks began with raw imagery and produced a 

result in a couple of hours of computer processing time. This combined with “heads-up” 

digitizing in GIS, the preferred means to identify windbreak location for many applications 

created an excellent windbreak inventory in Kansas. The methods identified geospatial locations 

of 4592 windbreaks in fourteen counties in Western Kansas (Figure 4). Once we finalized the 

number of windbreaks and their location, we calculated area for each windbreak using the 

ArcGIS utility tool. These windbreaks cover approximately an area of 2596 hectares (Table 3). 

The combined results of the OBIA and digitizing process have generated an excellent inventory 

of windbreaks in each of the fourteen counties with overall accuracy of 96%.  
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FIGURE 4: LOCATION OF WINDBREAKS IN FOURTEEN COUNTIES OF KANSAS  

 

TABLE 3: FINAL NUMBER OF WINDBREAKS AND THE AREA COVERED BY THESE 

WINDBREAKS IN THE STUDY AREA  

 

County No of  

Windbreaks 

Area covered by Windbreaks 

 Acres Hectares 

Clark 166 728.8169 294.941 

Meade 239 440.451 178.244 

Seward 29 26.170 10.590 

Haskell 22 26.9154 10.89 

Gray 196 222.5538 90.064 

Ford 316 1166.207 471.94 
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Hodgeman 109 140.538 56.8737 

Ellsworth 512 701 284 

Russell 287 404.225 163.584 

Ellis 769 724.403 293.155 

Trego 504 473.483 191.612 

Gove 645 522.774 211.559 

Logan 462 488.468 197.676 

Wallace 336 349.141 141.292 

Total 4592  6269.4531  2537.153  

 

Once the area covered by the windbreaks was calculated, we were able to assign condition 

classes (good, fair and poor) to the windbreaks, based on the survey of selected samples on 

ground. The study summarized that out of 4592 windbreaks in the study area, 61% of the 

windbreaks are in good condition, 25 % in fair condition and 14% of the windbreaks are in poor 

condition (FIGURE 5). We also categorize each of these 4592 windbreaks into farmstead, 

livestock, and field windbreaks, based on their primary function. The study revealed that 44% of 

windbreaks were farmstead, 42% were field windbreaks and 14% were serving livestock 

((Figure 6).  

   

 

FIGURE 5: GROUND CONDITION OF WINDBREAKS BY COUNTY, KANSAS 
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FIGURE 6: PRIMARY FUNCTION OF WINDBREAKS IN THE STUDY AREA  

 

6. CONCLUSION 

Reports from various agencies estimated that over 44% of Kansas windbreaks are in 

decline and in need of renovation. There is a little good science to efficiently document 

windbreak's exact location, size and specific condition. Therefore, it was timely to develop 

methods for the rapid identification of windbreak location. While a variety of windbreak surveys 

have been conducted in the past, none performed in Kansas have ever attempted to extract 

windbreaks from aerial imagery at the county level. Therefore, we used a remote sensing 

approach based on object-based image analysis to identify windbreaks visible in the color aerial 

imageries of NAIP. The method developed can be applied to identify the location of windbreaks 

in Kansas that other areas in the Great Plains region and beyond. 

The object-based image analysis was successful in classifying and locating windbreaks 

with overall accuracy of 58.97% with Kappa value 0.121. This assessment is satisfactory. 

Confusion between riparian areas, shrub patches and linear vegetated ditches along the road were 

the main source of error. The other error was younger windbreaks were missed during 

classification process. However, from practical point of view, the results received from the 

classification alone are significant. This process of windbreak identification is far less time 

consuming and cost effective as compared to visiting and identifying each of the windbreaks on 

the ground.  

Field 
42% 

Farmstead 

44% 

Livestock 
14% 
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Studies have suggested that resultant products from similar semi-automated methods are 

not sufficiently reliable to be of direct utility without some form of manual editing and revision 

(Benz et.al, 2004; Blashke, 2010 Tsai et al, 2011).  Considerable manual editing is normal in 

case of image processing and photogrammetry. Therefore, heads-up digitization in ArcGIS is our 

current alternative to complement and compensate methodological limitation. We used heads-up 

digitization to include missed windbreaks. We also used the editor tool and a smoothing 

technique in ArcGIS to merge the fragmented windbreaks, correct the boundaries demarcation, 

and delete non-windbreak features classified as windbreaks. At the mean time, we continue to on 

improving the methodology to get better accuracy and desired results from OBIA. 

OBIA combined with heads-up digitizing and editing tools in ArcGIS yielded desired 

results. The methods identified geospatial locations of 4592 windbreaks in fourteen counties in 

Western Kansas with overall accuracy of 96%.  The windbreaks cover approximate area of 2596 

hectares. The field survey of selected samples supported our claim that 96 percent of the time 

windbreaks identified through digital image processing of NAIP images were correctly 

identified. Only 4% of the objects identified through NAIP image analysis were not windbreak. 

The 4% of the non-windbreak features classified as windbreaks were riparian area, shrub patches 

and/or fruit orchard.   

We conclude that the OBIA combined with heads-up digitization proved successful at 

rapidly identifying windbreaks locations. The field survey of selected was crucial in validating 

the results obtained from the digital image processing. The survey was also helpful in identifying 

the primary function of windbreaks and their condition in the field. Therefore, similar methods 

can be used in future projects to locate windbreaks in other Kansas counties and across the Great 

Plains. 
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