749 research outputs found

    Acute pulmonary pathology and sudden death in rats following the intravenous administration of the plasticizer, DI (2-ethylhexyl) phthalate, solubilized with Tween surfactants

    Get PDF
    Intravenous administration of 200-300 mg/kg of di(2-ethylhexyl)phthalate (DEHP) solubilized in aqueous solutions of several Tween surfactants caused respiratory distress in rats. There was a dose-dependent lethality with death generally occurring within 90 minutes after injection. The lungs from DEHP:Tween treated animals were enlarged, generally darkened, and in some cases showed hemorrhagic congestion. Neither the overt symptoms nor the morphologic alterations resulting from DEHP:Tween administration could be reproduced by intravenous administration of aqueous Tween solutions alone. The absence of pulmonary abnormalities following the intravenous administration of DEHP as an aqueous emulsion given either alone or even as soon as 2 minutes after pretreatment with Tween 80, suggests that the specific in vivo interaction between DEHP and Tween surfactants depends on the prior formation of water-soluble micelles of DEHP

    Acoustic field visualisation using local absorption of ultrasound and thermochromic liquid crystals

    Get PDF
    Acoustic field and vibration visualisation is important in a wide range of applications. Laser vibrometry is often used for such visualisation, however, the equipment has a high cost and requires significant user expertise, and the method can be slow, as it requires scanning point by point. Here we suggest a different approach to visualisation of acoustic fields in the kHz – MHz range, using paint-on or removable film sensors, which produce a direct visual map of ultrasound displacement. The sensors are based on a film containing thermochromic liquid crystals (TLC), along with a backing/underlay layer which improves absorption of ultrasound. The absorption generates heat, which can be seen by a change in colour of the TLC film. A removable sensor is used to visualise the resonant modes of an air-coupled flexural transducer operated from 410 kHz to 7.23 MHz, and to visualise 40 kHz standing waves in a Perspex plate. The thermal basis of the visualisation is confirmed using thermal imaging. The speed and cost of visualisation makes the new sensor attractive for use in condition monitoring, for fast assessment of transducer quality, or for analysis of acoustic field distribution in power ultrasonic systems

    Early Ultraviolet, Optical and X-Ray Observations of the Type IIP SN 2005cs in M51 with Swift

    Get PDF
    We report early photospheric-phase observations of the Type IIP Supernova (SN) 2005cs obtained by Swift's Ultraviolet-Optical and X-Ray Telescopes. Observations started within two days of discovery and continued regularly for three weeks. During this time the V-band magnitude remained essentially constant, while the UV was initially bright but steadily faded until below the brightness of an underlying UV-bright HII region. This UV decay is similar to SNe II observed by the International Ultraviolet Explorer. UV grism spectra show the P-Cygni absorption of MgII 2798A, indicating a photospheric origin of the UV flux. Based on non-LTE model atmosphere calculations with the CMFGEN code, we associate the rapid evolution of the UV flux with the cooling of the ejecta, the peak of the spectral energy distribution (SED) shifting from ~700A on June 30th to ~1200A on July 5th. Furthermore, the corresponding recombination of the ejecta, e.g., the transition from FeIII to FeII, induces considerable strengthening of metal line-blanketing at and above the photosphere, blocking more effectively this fading UV flux. SN2005cs was not detected in X-rays, and the upper limit to the X-ray luminosity yields a limit to the mass loss rate of the progenitor of about 10^-5 solar masses per year. Overall, Swift presents a unique opportunity to capture the early and fast evolution of Type II SNe in the UV, providing additional constraints on the reddening, the SED shortward of 4000A, and the ionization state and temperature of the photon-decoupling regions.Comment: 15 pages, 6 figures. Accepted for publication by Astrophysical Journa

    Theoretical analysis of the electronic structure of the stable and metastable c(2x2) phases of Na on Al(001): Comparison with angle-resolved ultra-violet photoemission spectra

    Full text link
    Using Kohn-Sham wave functions and their energy levels obtained by density-functional-theory total-energy calculations, the electronic structure of the two c(2x2) phases of Na on Al(001) are analysed; namely, the metastable hollow-site structure formed when adsorption takes place at low temperature, and the stable substitutional structure appearing when the substrate is heated thereafter above ca. 180K or when adsorption takes place at room temperature from the beginning. The experimentally obtained two-dimensional band structures of the surface states or resonances are well reproduced by the calculations. With the help of charge density maps it is found that in both phases, two pronounced bands appear as the result of a characteristic coupling between the valence-state band of a free c(2x2)-Na monolayer and the surface-state/resonance band of the Al surfaces; that is, the clean (001) surface for the metastable phase and the unstable, reconstructed "vacancy" structure for the stable phase. The higher-lying band, being Na-derived, remains metallic for the unstable phase, whereas it lies completely above the Fermi level for the stable phase, leading to the formation of a surface-state/resonance band-structure resembling the bulk band-structure of an ionic crystal.Comment: 11 pages, 11 postscript figures, published in Phys. Rev. B 57, 15251 (1998). Other related publications can be found at http://www.rz-berlin.mpg.de/th/paper.htm

    Synergistic effects of iron and temperature on Antarctic phytoplankton and microzooplankton assemblages

    Get PDF
    © 2009 The Authors. This article is distributed under the terms of the Creative Commons Attribution 3.0 License. The definitive version was published in Biogeosciences 6 (2009): 3131-3147, doi: 10.5194/bg-6-3131-2009Iron availability and temperature are important limiting factors for the biota in many areas of the world ocean, and both have been predicted to change in future climate scenarios. However, the impacts of combined changes in these two key factors on microbial trophic dynamics and nutrient cycling are unknown. We examined the relative effects of iron addition (+1 nM) and increased temperature (+4°C) on plankton assemblages of the Ross Sea, Antarctica, a region characterized by annual algal blooms and an active microbial community. Increased iron and temperature individually had consistently significant but relatively minor positive effects on total phytoplankton abundance, phytoplankton and microzooplankton community composition, as well as photosynthetic parameters and nutrient drawdown. Unexpectedly, increased iron had a consistently negative impact on microzooplankton abundance, most likely a secondary response to changes in phytoplankton community composition. When iron and temperature were increased in concert, the resulting interactive effects were greatly magnified. This synergy between iron and temperature increases would not have been predictable by examining the effects of each variable individually. Our results suggest the possibility that if iron availability increases under future climate regimes, the impacts of predicted temperature increases on plankton assemblages in polar regions could be significantly enhanced. Such synergistic and antagonistic interactions between individual climate change variables highlight the importance of multivariate studies for marine global change experiments.This project was supported by US NSF grants ANT 0528715 to JMR, ANT 0741411, ANT 0741428 and OCE 0825319 to DAH, ANT 0338157 to WOS, ANT 0338097 to GRD, and ANT 0338350 to RBD

    Responses of marine benthic microalgae to elevated CO<inf>2</inf>

    Get PDF
    Increasing anthropogenic CO2 emissions to the atmosphere are causing a rise in pCO2 concentrations in the ocean surface and lowering pH. To predict the effects of these changes, we need to improve our understanding of the responses of marine primary producers since these drive biogeochemical cycles and profoundly affect the structure and function of benthic habitats. The effects of increasing CO2 levels on the colonisation of artificial substrata by microalgal assemblages (periphyton) were examined across a CO2 gradient off the volcanic island of Vulcano (NE Sicily). We show that periphyton communities altered significantly as CO2 concentrations increased. CO2 enrichment caused significant increases in chlorophyll a concentrations and in diatom abundance although we did not detect any changes in cyanobacteria. SEM analysis revealed major shifts in diatom assemblage composition as CO2 levels increased. The responses of benthic microalgae to rising anthropogenic CO2 emissions are likely to have significant ecological ramifications for coastal systems. © 2011 Springer-Verlag

    Myocardial perfusion reserve compared with peripheral perfusion reserve: A [13N]ammonia PET study

    Get PDF
    INTRODUCTION: [13N]ammonia PET allows quantification of myocardial perfusion. The similarity between peripheral flow and myocardial perfusion is unclear. We compared perfusion flow in the myocardium with the upper limb during rest and adenosine stress [13N]ammonia PET to establish whether peripheral perfusion reserve (PPR) correlates with MPR. METHODS: [13N]ammonia myocardial perfusion PET-scans of 58 patients were evaluated (27 men, 31 women, age 64 ± 13 years) and were divided in four subgroups: patients with coronary artery disease (CAD, n = 15), cardiac syndrome X (SX, n = 14), idiopathic dilating cardiomyopathy (DCM, n = 16), and normal controls (NC, n = 13). Peripheral limb perfusion was measured in the muscular tissue of the proximal upper limb and quantified through a 2-tissue-compartment model and the PPR was calculated (stress/rest ratio). MPR was also calculated by a 2-tissue-compartment model. The PPR results were compared with the MPR findings. RESULTS: Mean myocardial perfusion increased significantly in all groups as evidenced by the MPR (CAD 1.99 ± 0.47; SX 1.39 ± 0.31; DCM 1.72 ± 0.69; NC 2.91 ± 0.78). Mean peripheral perfusion also increased but not significantly and accompanied with great variations within and between groups (mean PPR: CAD 1.30 ± 0.79; SX 1.36 ± 0.71; DCM 1.60 ± 1.22; NC 1.27 ± 0.63). The mean difference between PPR and MPR for all subpopulations varied widely. No significant correlations in flow reserve were found between peripheral and myocardial microcirculatory beds in any of the groups (Total group: r = -0.07, SEE = 0.70, CAD: r = 0.14, SEE = 0.48, SX: r = 0.17, SEE = 0.30, DCM: r = -0.11, SEE = 0.71, NC: r = -0.19, SEE = 0.80). CONCLUSION: No correlations between myocardial and peripheral perfusion (reserve) were found in different patient populations in the same PET session. This suggests a functional difference between peripheral and myocardial flow in the response to intravenously administered adenosine stress
    corecore