851 research outputs found

    Episodic synchronization in dynamically driven neurons

    Get PDF
    We examine the response of type II excitable neurons to trains of synaptic pulses, as a function of the pulse frequency and amplitude. We show that the resonant behavior characteristic of type II excitability, already described for harmonic inputs, is also present for pulsed inputs. With this in mind, we study the response of neurons to pulsed input trains whose frequency varies continuously in time, and observe that the receiving neuron synchronizes episodically to the input pulses, whenever the pulse frequency lies within the neuron's locking range. We propose this behavior as a mechanism of rate-code detection in neuronal populations. The results are obtained both in numerical simulations of the Morris-Lecar model and in an electronic implementation of the FitzHugh-Nagumo system, evidencing the robustness of the phenomenon.Comment: 7 pages, 8 figure

    Relevance of pseudospin symmetry in proton-nucleus scattering

    Full text link
    The manifestation of pseudospin-symmetry in proton-nucleus scattering is discussed. Constraints on the pseudospin-symmetry violating scattering amplitude are given which require as input cross section and polarization data, but no measurements of the spin rotation function. Application of these constraints to p-58Ni and p-208Pb scattering data in the laboratory energy range of 200 MeV to 800 MeV, reveals a significant violation of the symmetry at lower energies and a weak one at higher energies. Using a schematic model within the Dirac phenomenology, the role of the Coulomb potential in proton-nucleus scattering with regard to pseudospin symmetry is studied. Our results indicate that the existence of pseudospin-symmetry in proton-nucleus scattering is questionable in the whole energy region considered and that the violation of this symmetry stems from the long range nature of the Coulomb interaction.Comment: 22 pages including 9 figures, correction of 1 reference, revision of abstract and major modification of chapter 4, Fig. 6, and Fig. 7; addition of Fig. 8 and Fig.

    Unitarity constraint for threshold coherent pion photoproduction on the deuteron and chiral perturbation theory

    Get PDF
    The contribution of the two-step process gamma + d -> p + n -> pi0 + d to the imaginary part of the amplitude for coherent pion production on the deuteron is calculated exploiting unitarity constraints. The result shows that this absorptive process is not negligible and has to be considered in an extraction of the elementary neutron production amplitude from the gamma + d -> pi0 + d cross section at threshold. In addition, it is argued that a consistent calculation of gamma + d -> pi0 + d in baryon chiral perturbation theory beyond next-to-leading order requires the inclusion of this absorptive process.Comment: 11 pages revtex including 2 postscript figure

    Topological Analysis of Functions on Arbitrary Grids: Applications to Quantum Chemistry

    Get PDF
    Algorithms are presented for performing a topological analysis of an arbitrary function, evaluated on an arbitrary grid of points. These algorithms work strictly by post-processing the data and require no additional function evaluations. This is achieved by connecting the grid points with a neighborhood graph, allowing the topological analysis to be recast as a problem in the graph theory. The flexibility of the approach is demonstrated for various applications involving analysis of the charge and magnetically induced current densities in molecules, where features of the neighborhood graph are found to correspond to chemically relevant topographical properties, such as Bader charges. These properties converge using orders of magnitude fewer grid points than uniform-grid approaches while exhibiting an appealing O[N log(N)] scaling of the computational cost. The issue of grid bias is discussed in the context of graph-based algorithms and strategies for avoiding this bias are presented. Python implementations of the algorithms are provided

    An Experimental Study of Metallic Diffusion and Phase Equilibria in Fremdlinge

    Get PDF
    Fremdlinge are opaque assemblages within CAis that are mainly composed of NiFe metal, V-magnetite and µm-sized RuOs nuggets. The prevailing scenario for their origin includes condensation, aggregation and equilibration at low T (≾ 600°C); they are then thought to be introduced into CAis at high T, followed by rapid cooling, thereby preserving the textures and assemblages from the pre-CAl, low T histories (Armstrong et al., 1985; Armstrong et al., 1987). A constraint on cooling rates of Fremdlinge comes from sharp contacts observed between RuOs nuggets and NiFe metals that enclose them. To determine the length of time that these contacts could have been held at high T, thin-film diffusion experiments were conducted with an electroplated Ru film on Ni. Samples were annealed at 1400, 1200, 1000 and 800°C for 0.3-137 hours. Measured Ru profiles in Ni were consistent with the following Arrhenius expression: D(cm^2/sec) = 0.0050exp(-2.3 x 10^(12)/RT) (T in K, R in Cgs units). Based on these data, we calculate that cooling rates of ≳ 10^5C/hr are necessary to preserve sharp contacts between RuOs and NiFe metals if they experienced the T of CAl melting (~ 1400°C) (Stolper and Paque, 1986). We consider this rate unreasonable in light of cooling rates inferred from experimental studies of the silicate portions of CAis (10^(-1) to 10^2°C/hr) (Stolper and Paque, 1986)

    Branching dendrites with resonant membrane: a “sum-over-trips” approach

    Get PDF
    Dendrites form the major components of neurons. They are complex branching structures that receive and process thousands of synaptic inputs from other neurons. It is well known that dendritic morphology plays an important role in the function of dendrites. Another important contribution to the response characteristics of a single neuron comes from the intrinsic resonant properties of dendritic membrane. In this paper we combine the effects of dendritic branching and resonant membrane dynamics by generalising the “sum-over-trips” approach (Abbott et al. in Biol Cybernetics 66, 49–60 1991). To illustrate how this formalism can shed light on the role of architecture and resonances in determining neuronal output we consider dual recording and reconstruction data from a rat CA1 hippocampal pyramidal cell. Specifically we explore the way in which an Ih current contributes to a voltage overshoot at the soma

    A Zero-Gravity Instrument to Study Low Velocity Collisions of Fragile Particles at Low Temperatures

    Get PDF
    We discuss the design, operation, and performance of a vacuum setup constructed for use in zero (or reduced) gravity conditions to initiate collisions of fragile millimeter-sized particles at low velocity and temperature. Such particles are typically found in many astronomical settings and in regions of planet formation. The instrument has participated in four parabolic flight campaigns to date, operating for a total of 2.4 hours in reduced gravity conditions and successfully recording over 300 separate collisions of loosely packed dust aggregates and ice samples. The imparted particle velocities achieved range from 0.03-0.28 m s^-1 and a high-speed, high-resolution camera captures the events at 107 frames per second from two viewing angles separated by either 48.8 or 60.0 degrees. The particles can be stored inside the experiment vacuum chamber at temperatures of 80-300 K for several uninterrupted hours using a built-in thermal accumulation system. The copper structure allows cooling down to cryogenic temperatures before commencement of the experiments. Throughout the parabolic flight campaigns, add-ons and modifications have been made, illustrating the instrument flexibility in the study of small particle collisions.Comment: D. M. Salter, D. Hei{\ss}elmann, G. Chaparro, G. van der Wolk, P. Rei{\ss}aus, A. G. Borst, R. W. Dawson, E. de Kuyper, G. Drinkwater, K. Gebauer, M. Hutcheon, H. Linnartz, F. J. Molster, B. Stoll, P. C. van der Tuijn, H. J. Fraser, and J. Blu
    corecore