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ABSTRACT: Algorithms are presented for performing a topological analysis
of an arbitrary function, evaluated on an arbitrary grid of points. These
algorithms work strictly by post-processing the data and require no additional
function evaluations. This is achieved by connecting the grid points with a
neighborhood graph, allowing the topological analysis to be recast as a
problem in the graph theory. The flexibility of the approach is demonstrated
for various applications involving analysis of the charge and magnetically
induced current densities in molecules, where features of the neighborhood
graph are found to correspond to chemically relevant topographical
properties, such as Bader charges. These properties converge using orders
of magnitude fewer grid points than uniform-grid approaches while exhibiting
an appealing O[N log(N)] scaling of the computational cost. The issue of grid bias is discussed in the context of graph-based
algorithms and strategies for avoiding this bias are presented. Python implementations of the algorithms are provided.

1. INTRODUCTION
First-principles quantum mechanical calculations have been
widely successful in describing chemical processes at a
fundamental level. However, the interpretability of these
calculations is still an ongoing subject of debate.2,3 How
does one move between the electrons and nuclei of first-
principles calculations to the more intuitive building blocks of
chemistry, such as atoms, bonds, lone-pairs, and so forth?
Significant progress has been made in the forward direction by
considering the topography and topology of quantum-
mechanical objects in a field that has become known as
quantum-chemical topology (QCT).4−6 Early examples, such
as Bader’s partitioning of atoms-in-molecules (AIM) via the
basins of attraction of the electron density, ρ, demonstrated
that it was possible to recover the concepts of atoms7 and
bonds.8 Later, such methods were generalized and applied to
properties such as the electron localization function (ELF)9

and the Laplacian of the density, ∇2ρ,10 which elucidate the
role and locations of lone pairs and core and valence regions in
chemical reactions. The Laplacian can also be used to delimit
regions of strong and weak correlation11 and is crucial to the
construction of kinetic energy functionals.12−14 The relation-
ship between topology and the description of the overall
system as a set of open quantum sub-systems, as initially
demonstrated by Bader,15 has also been generalized.16

The use of topology to derive chemically intuitive quantities
from first-principles calculations is an important part of
strengthening the link between quantum mechanics and
chemistry. However, it is also important to be able to move
in the other direction�to be able to incorporate chemical

ideas into first-principles calculations. Ideally, one would be
able to set up a feedback loop whereby chemically intuitive
quantities can be calculated from first-principles and fed back
into the calculation to improve the results. This work
investigates one route to achieve this for density functional
theory (DFT) calculations by providing a method to calculate
topological properties of functions defined on a real-space
integration grid. This is achieved by the construction of a
neighborhood graph over the DFT grid points and it is
demonstrated that intrinsic properties of the graph, such as
maximal spanning trees and strongly connected subgraphs,
correspond to chemically relevant properties. Having such
topological information available on a per-grid point basis
allows for its direct incorporation into DFT calculations.

2. TOPOLOGICAL ANALYSIS ON ARBITRARY GRIDS
2.1. Terminology. A brief primer on notation and relevant

mathematical concepts is provided in Appendix A. It is
important to clarify that in what follows, and in the field of
QCT more broadly, the term “topology” is used in a looser
sense (with some exceptions�see ref 17) than in the branch
of mathematics bearing the same name. We use the term in its
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broader sense as pertaining to properties of a geometric object
(in our case, a quantum-mechanical function) that are
preserved under continuous deformations (in our case, small
deformations of a molecule). In this work, the topological
properties of interest will be properties of the topography of the
quantum-mechanical function of interest. For example,
maxima, minima, and saddle points are topographical features,
but their existence and connectivity are topological properties.
These topological properties are insensitive to the level of
theory used to describe a molecule (e.g., Hartree−Fock or
DFT). However, in contrast to stricter definitions of
conservation in mathematics, topological properties in QCT
are typically not conserved through chemical processes, such as
bond breaking or formation�a fact which underpins their
usefulness in identifying and classifying such phenomena.
2.2. Grids. In numerical studies, it is common to represent

a function f : N by its values defined on a grid G of
points in N

= { }F f x x G( ): N (1)

If the grid is constructed in a suitable fashion, it is possible to
preserve information about the function in the neighborhood
of a particular point. For example, if G is a uniform grid with
spacing s

= { }G n s n s n s n( , , ..., ):N i1 2 (2)

then, we can define the neighbors of a particular grid point
straightforwardly as

= =

{ | | { }}

N r n s n s n s

m s m s m s m n

( ( , , ..., ))

( , , ..., ): 0,1

N

N i i

1 2

1 2 (3)

We can even go on to approximate the derivatives of f using,
for example, finite differences

[ + ]f
x

n s s f n s f n s( , ...) (( 1) , ...) ( , ...)
1

1
1

1 1
(4)

assuming the spacing s is small enough to resolve variations in f
accurately.

Despite the simplicity of a uniform grid, it is common to
generate G in a less trivial fashion to reduce the storage
requirements and the computational cost of operations on F.
For example, in order to make routine DFT calculations
feasible, typical grids used to perform real space integration
become less dense further from atomic nuclei, where the
electron density is lower and quantum-mechanical functions
vary more slowly.18 Topological analysis on such non-uniform
grids has been carried out previously in the context of Bader’s
quantum theory of atoms in molecules (QTAIM15).19−21

However, such methods rely on the ability to freely evaluate f
and its gradient ∇f. In the present work, a method to perform
topological analysis without supplementing the function
evaluations given in eq 1 is developed. This method is
therefore a strict post-processing of F and can be easily applied
to an arbitrary function (or set of data points with the form of
eq 1). This also permits its packaging as a generally applicable
software tool.1

2.3. Graphs over Grids. Determining the neighbors of a
given grid point, as was done in eq 3 for a uniform grid, is a
necessary prerequisite to perform a topographical analysis.
Even simple topographical objects, such as local maxima and
minima, are defined with reference to the behavior of the

function when moving to “nearby” points. It is possible to
encode the necessary information about the neighbors of a
given grid point in the edges of a neighborhood graph N with
nodes given by the points in G, and edges connecting each
node x ∈ G to a set of neighbors N(x) ⊂ G/x. In this section,
the construction of such graphs is investigated.

2.3.1. Choice of Graph Construction. There are many ways
to construct a neighborhood graph N for an arbitrary set of
points G (a few are shown in Figure 2). In practice, G will be
limited to a finite region of N and we will not be primarily
concerned with the boundary of points forming the convex hull
H(G), but only the bulk B(G) = G/H(G). The goal when
choosing a construction is to most closely preserve the
topography of f (and topology thereof) when moving from its
representation in N to its representation on G. This leads to
enforcing the following requirements for N

1 Connected: N should be connected (any node can be
reached from any other node via a path along edges).

2 Undirected: y ∈ N(x) ⇒ x ∈ N(y).
3 Basis-preserving: Given x ∈ B(G), the vectors {y − x: y

∈ N(x)} must form a basis of N .
4 Move-preserving: Given a point x ∈ B(G) and an

arbitrary direction N , a move can be made to a
neighbor y ∈ N(x) so that the projection of the move
o n t o δ i s p o s i t i v e . I n s h o r t ,

>x B G y N x y x, ( ) ( ): ( ) 0N .

Condition 3 ensures the existence of an approximate
gradient g(x) ≈ ∇f(x) on the graph via finite differences by
minimizing the residual norm ∑y∈N(x)|ϵy|2 of a first-order
Taylor expansion (see Figure 1 for an example)

= + +f y N x f x y x g x( ( )) ( ) ( ) ( )T
y (5)

leading to

=g x M b( ) 1 (6)

where

=M y x y x( )( )
y N x

T

( ) (7)

= [ ]b f y f x y x( ) ( ) ( )
y N x( ) (8)

Which would not have a unique solution (M would be
singular) if {y − x: y ∈ N(x)} did not form a basis. Condition
3 is necessary, but not sufficient, for condition 4, which ensures
that the gradient can be followed as well as approximated on
the graph.

These conditions serve to narrow down the choice of graph
construction. For example, given the goal of defining a
neighborhood, it might be tempting to use the set of n nearest
neighbors of each point N(n) (x) to define the n-nearest-
neighbor graph

= { }N x y G y N x x N y( ) : ( )or ( )n
n n( ) ( ) (9)

where the reverse condition x ∈ N(n) (y) has been included to
ensure that the graph is undirected. Examples of nearest
neighbor graphs N2 and N3 are shown in Figure 2 for a 2D
grid, where we can see they suffer from several shortcomings.
In particular, they are not necessarily connected or move-
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preserving which leads to the introduction of fictitious local
maxima and local minima as can be seen in Figure 3.

2.3.2. Delaunay Triangulation. A sensible choice of graph
to overcome the issues with nearest-neighbor graphs is a
triangulation. A triangulation of a grid G is a set of simplices (N-

dimensional analogues of triangles) that tile the convex hull
H(G) (see, e.g., ND in Figure 2). Any triangulation
immediately satisfies the requirements given in Section 2.3.1
and possesses high-quality numerical gradients, even for the
pathological case of a random grid, as can be seen in Figure 1.

The specific case of a DT satisfies many additional desirable
criteria,22 several of which also serve as independent definitions
of the DT.23 Of particular relevance here, for a grid of points G
and function evaluations F, the DT minimizes the area
(volume for d > 2) of the polyhedral surface representing F�
an illustration of this condition is shown in Figure 4 (left). The
DT also minimizes the size of the largest open ball

= { | | < }b x d y y x d( ( ; ) : )N which bounds a simplex24

and thus avoids large simplices corresponding to large
neighborhoods�this is also shown in Figure 4 (lower right).

The choice of DT is related to the nearest-neighbor
interpolation of the function

=f x f x f x G( ) ( ) ( )NN (10)

where x → G is the nearest neighbor of x in G

= | |x G y xargmin
y G (11)

Figure 1. Analytic (∇f, top) and numerical (g, middle�calculated via
eq 6) gradients for f(x) = exp(−|x − a|2) + exp(−|x − b|2) (a = red
dot, b = blue dot) with neighbors given by a Delaunay triangulation
(DT) (light gray graph) of a set of random points (black dots). A
histogram (bottom, log scale) of normalized dot products between
analytic and numerical gradients.

Figure 2. Three possible neighborhood graphs for the grid G. Graph
N2 (red) is generated by connecting each grid point to its two nearest
neighbors (note that the requirement of an undirected graph leads to
more than two neighbors for some points). Graph N3 (green) is
generated by connecting each grid point to its three nearest
neighbors. These nearest neighbor graphs can lead to disconnected
regions (as circled for N2) and nodes in the bulk that are not move-
preserving (marked with black crosses). Graph ND (blue) is a DT and
exhibits no such issues.

Figure 3. Function f(x, y) with a single maximum, represented on 2D
graphs N2 (left) and ND (right), constructed in the same way as those
in Figure 2. The graph N2 introduces fictitious local maxima and
minima (red and blue circles, respectively). ND recovers the point
closest to the true global maximum of f as the only local maximum.
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Given a grid point y ∈ G, the region { = }x x G y:N ,
where fNN(x) = f(y) is known as the Voronoi cell of y. The
neighborhood graph obtained via a DT is equivalent to
connecting points with corresponding Voronoi cells that are
adjacent in N .25 Such connectivity of Voronoi cells of grid
points is also known to be useful when approximating the flux
of gradient paths between cells.26 We employ the QHull
implementation of DT27 using the python interface provided
by SciPy.28 Constructing the DT in N-dimensions is equivalent
to constructing the convex hull of the points lifted into an N +
1 dimensional paraboloid�QHull constructs the DT by
constructing this convex hull using the QuickHull algorithm.27

2.4. Maxima Families and Basins of Attraction. Along
with a suitable definition for neighborhoods, it is important to
be able to identify regions of interest in G. In particular, given a
function f : N , it is essential to be able to identify
connected subsets of N for which f is locally maximal. These
include not only pointlike maxima of f (e.g., the point x = 0 for
f = −|x|) but also spatially extended maxima (e.g., the shell at |
x| = 1 of f(x) = −(|x| − 1)2). Such a subset (and its analogue
on G) will be referred to as a maxima family M and the set of
maxima families of f as f( ). Then, for a given family
M f( ), f(x) ≥ f(x + δ) ∀ x ∈ M for any infinitesimal
perturbation 0N . The concept of maxima families
also permits the definition of basins of attraction of f. Given a
starting point x N , we can define a point of attraction A(x)
via repeated application of a steepest-ascent step

=
| |

S x
f y f x

y x
( ) argmax

( ) ( )

y b x( ; ) (12)

as

=A x x( ) lim lim ( )
N

N

0 (13)

where the open circle ○ in Sδ
○N denotes N nested applications

of Sδ to x (not taking the Nth power). A basin of attraction of f
is then the region of N for which all steepest-ascent paths lead
to a particular maxima family

= { }B M x A x M( ) : ( )N (14)

The concept of a steepest ascent path generalizes
straightforwardly to a graph and so one might also expect
basins of attraction to generalize straightforwardly. However, in
general, the maxima of f will not lie exactly on the grid G. This
means that the set of points on the graph that are best suited to
represent a particular maxima family will not all have exactly
the same function values and maxima families can only be

approximately defined. In the present work, the definition is
based upon an expansion around the local maxima of the graph
ML(G) = {x ∈ G: f(y) < f(x) ∀ y ∈ N(x)} which are typically
the closest points on G to maxima families of f. In order to
construct the basins of attraction, two objects must be
constructed; A: G → ML(G) which maps a point to the local
maximum whose basin of attraction it resides in [in analogy to
the point of attraction A x( ) N] and the families of local
maxima f G( , ) [in analogy to the maxima families f( ) on

N]. The basins of attraction for the maxima families are then

= { }B M f G x G A x M( ( , )) : ( ) (15)

in analogy with eq 14.
The algorithm to determine A is based on that of

Henkelman et al.,29 but applied to a graph rather than to a
uniform grid. A schematic is shown in Figure 5 and the steps
are detailed below

1 Initialize: Let D(A) be the domain of A: G → ML(G)
(i.e., the set of points assigned to a local maximum).
Initially, D(A) = ϕ.

2 Check termination: If the set of unassigned points G/
D(A) is empty, then A: G → ML(G) is complete on G
(all points have been assigned) and the algorithm
terminates.

3 New path: Identify an unassigned point x ∈ G/D(A)
and start a steepest ascent path P = {x}.

4 Reached maxima: If x ∈ ML(G), then let A(p) = x ∀ p ∈
P and return to step 2

5 Steepest step: Identify y ∈ N(x) that maximizes [f(y) −
f(x)]/|y − x| and add it to P.

6 Shortcut: If y is assigned [y ∈ D(A)], then let A(p) =
A(y) ∀ p ∈ P and return to step 2.

7 Iterate: Let x = y and return to step 4.

As noted in ref 30, step 6 of this algorithm allows
rediscovery of previous steepest ascent paths and significantly
improves runtime performance.

Once we have constructed the map A: G → ML(G)
associating points to local maxima, we turn our attention to the
algorithm to cluster local maxima into families f G( , ). This
clustering is based upon a measure of deviation

×d x y M G G( , ): ( )L that increases as y moves away
from the maxima family containing the local maximum x. In
the present work, the following measure is used

Figure 4. Illustration of the minimum-area and min-max-bounding-
ball conditions satisfied by, and only by, a DT.

Figure 5. Schematic showing how steepest ascent paths (arrows) on a
graph allow us to reconstruct the two regions of attraction (the set of
red and blue dots, respectively) for two separate maxima of the same
function.
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= | |
{ }

d x y
f y f x

f y f x f z z G
( , )

( ) ( )
max( ( ), ( )) min( ( ): ) (16)

This is essentially the fractional change in the function value
due to moving from x to y, and therefore, d(x, y) ∈ [0, 1]
independently of the scale of the function. Once d(x, y) has
been defined, a tolerance t can be chosen such that d(x, y) < t
defines a stationary region around each maxima (see Figure 6)

and apply the following algorithm to cluster local maxima into
families. The algorithm begins by constructing a flood fill
around each local maxima according to the tolerance and ends
by merging overlapping flood fills into connected families (see
Figure 7)

1 Initialize: Let i = 0 and F0 = ϕ be an empty flood fill.
2 New maxima: Identify a local maximum that is not yet in

a flood fill x ∈ ML(G)/∪jFj and let Fi = {x}. If no such
maxima exist, go to step 5.

3 Identify shell: Identify the shell S of neighbors
surrounding Fi as =S N y F( )/

y F
i

i

. Identify the points

in the shell that are still within tolerance of the initial
maximum T = {y ∈ S: d(x, y) < t}. If T is empty, then Fi
is complete; set i = i + 1 and return to step 2.

4 Expand: Expand Fi to include points in T: Fi → Fi ∪ T.
Return to step 3.

5 Merge floods: If any two flood fills overlap (∃ i ≠ j: Fi ∩
Fj ≠ ϕ), then merge into a single flood fill: Fmin(i,j) → Fi
∪ Fj, Fmax(i,j) → ϕ. Repeat this process until no flood fills
overlap.

6 Assign families: Group maxima into families according
to the merged flood to which they belong

= {{ } }f G F M G i F( , ) ( ) :i iL .
2.5. Basins of Attraction: Example Applications.

2.5.1. Calculation Parameters. Unless stated otherwise,
example applications presented in the rest of this work were
carried out using quantities from a Hartree−Fock calculation
with a cc-pVDZ basis set. For topology analysis, the quantity of
interest is then evaluated on a DFT grid generated using an
Lindh−Malmqvist−Gagliardi (LMG) radial grid31 (with a
threshold of 10−10), a Lebedev angular grid32 (with degree
between 15 and 25 depending on the radius), and by pruning
points with a weight of less than 10−12. This results in a
relatively coarse DFT grid (∼104 points per atom), with the
hope of replicating the worst-case scenario that would be
encountered in real-world applications. Hartree−Fock was
used rather than DFT so that the dependence of the topology
analysis on the grid could be investigated independently of the
quality of Fock-matrix integration (for which the DFT grid is
used).

2.5.2. Bader Regions. An object of central importance in
quantum chemistry is the electron density +r( ): 3 .
Bader demonstrated a correspondence between the basins of
attraction of the electron charge density and atoms in
molecules.15 Specifically, each basin of attraction contains
exactly one atom in a molecular system, allowing one to
uniquely assign the electronic charge present on each atom as
the integral of the charge density over its basin of attraction.
This leads to the Bader charges, here defined in 3 as

=q M dr r( ( )) ( )
B M( )

3

(17)

and on G as

=q M G x w x( ( , )) ( ) ( )
x M (18)

where w(x) are grid integration weights (typically generated
along with the grid itself,18 but which could be taken as the
volume of the Voronoi cell of x). The basins of attraction for
the electron density of a benzene molecule are shown in Figure
8. Near to the z = 0 plane (Figure 8, top), the basins of
attraction are delimited into six wedges, each containing a
single H basin and a single C basin according to the sixfold
rotational symmetry of benzene. However, further from the
nuclei some points are assigned to basins of attraction outside
of their wedge (Figure 8, bottom, white circle). For the coarse
grids specified in Section 2.5.1, this misassignment affects
approximately 1% of the points. However, as these points are
in regions of low electron density, the error in Bader charges
resulting from this misassignment is of the order of 1/1000th
of an electron. The convergence of Bader charges as a function
of grid size is investigated in detail in Section 2.8.1.

2.5.3. Electron Shells from ∇2ρ. Bader charge analysis as
carried out in Section 2.5.2 is insensitive to the treatment of
maxima families. This is because, for molecular systems, the
electron density ρ has no extended maxima, only distinct
point-like maxima near to each nucleus. However, this is not
true for the Laplacian of the electron density ∇2ρ. Indeed, the

Figure 6. Regions with a deviation d(xi, x) of less than t = 0.25 for
two maxima x1 and x2 of a function f(x). Note that the region for the
smaller maxima is smaller, thanks to the scale-independence of the
deviation measure (eq 16).

Figure 7. Schematic showing how the algorithm in Section 2.4
identifies the circular maxima family of the function f(x) = −(|x| −
1)2. Nodes that are within (beyond) t of a local maximum according
to the measure of deviation are shown as black (white) circles. Note
that all of the flood fills overlap, leading to all of the local maxima
being considered as part of the same maxima family.
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electronic shell structure of atoms leads to ∇2ρ exhibiting
alternating regions of charge concentration (∇2ρ < 0) and
charge depletion (∇2ρ > 0) as one moves radially away from
the nucleus.10 This naturally leads to spatially extended
maximal shells of ∇2ρ and derived quantities, as can be seen
for a Neon atom in Figure 9. The changes in the shell structure
of the Laplacian upon bond formation will be discussed in
Section 2.7.2.

2.5.4. Isosurfaces. Given a target function value f iso, an
isosurface of f can be defined as { = }x f x f: ( )N

iso . Due to

the delocalized nature of electrons in molecules, isosurfaces are
commonly used in molecular visualization. The ability to
identify families of maxima allows the topological analysis of
such isosurfaces by defining an auxiliary function f I(x) =
exp(−|f(x) − f iso|) which will be maximal, where f(x) = f iso.
The maxima family (or families) where f I(x) ≈ 0 then serve as
a suitable definition of isosurfaces. An example of this can be
seen in Figure 10, where non-covalent bonding in H2 under a
strong magnetic field (as explored in ref 33) can be identified
as the separation of the half-maximum-value isosurface of the
electron density (where ρ(x) = max(ρ)/2) into two distinct
maxima families.
2.6. Critical Paths. A critical path is defined as a path

linking two local maxima on N that maximizes the minimum
value of f encountered (the critical value of that path). The
equivalent of this path in N necessarily passes through a first-
order saddle point of f known as a critical point and, in analogy,
the point of minimum f on a critical path in N is labeled as a
critical point (see Figure 11). Given a neighborhood graph N,
edge weights are assigned as the average of the function values
at the endpoints of the edge. It is then possible to find critical
paths rapidly by noting that they are paths on the maximum
spanning tree (MST) of N (see Appendix A), which is denoted
as M(N) (the critical-path problem essentially becomes the
widest path problem from graph theory). In fact, the critical
path between two local maxima on N is the only path linking
the maxima on M(N), thanks to the fact that M(N) is acyclic.
The union of all critical paths is called the critical tree, which
can be found rapidly and in its entirety by repeatedly pruning
the maximum spanning tree according to the following
algorithm (shown in Figure 11)

1 Maximum spanning tree: Let M be the maximum
spanning tree of N, evaluated with edge weights given by
the average of function values on the endpoints of each
edge.

2 Identify leaf nodes: Let C be the set of leaf nodes of
M(N) (nodes with only one neighbor) that are not local

Figure 8. DFT grid points for benzene colored according to basins of
attraction of the electron density, evaluated by the algorithm given in
Section 2.4. The top figure shows only points within 0.01 bohr of z =
0 and demonstrates the proper sixfold symmetry of the regions. The
bottom figure shows all points, including some which have been
misassigned due to the sparsity grid points far from the nuclei (e.g.,
the orange points highlighted with a white circle at z > 5 bohr, where
+ve z is out of the page).

Figure 9. Atomic shells of a Ne atom, visualized by plotting the
distinct maxima families of |∇2ρ| on a DFT grid, identified by the
algorithm given in Section 2.4. The axes are in bohr.
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maxima. If there are no such nodes, terminate the
algorithm.

3 Pruning: Remove the nodes C from M. Return to step 2.

One can avoid searching the entire tree for leaf nodes at
every iteration of step 2 by expanding from the previous set of
pruned leaf nodes.

2.6.1. Recovering Cyclic Graphs (Gap-Filling). The critical
tree is inherently acyclic (as it is a subgraph of the maximum
spanning tree)�a direct consequence of the definition of a
critical path. However, it is possible that there are multiple
paths with very similar critical values between a given pair of
local maxima. For example, the electronic charge density of a
benzene molecule exhibits local maxima at the nuclei which

can be linked together by traversing the aromatic ring either
clockwise, or anticlockwise (see Figure 12). Both of these

routes have very similar critical values, but only one (that
which has the slightly larger critical value within a finite
precision computation) will be included in the critical tree. For
the benzene system this means that whichever bond happens
to have the lowest electron density will be excluded from the
maximum spanning tree and hence also from the critical tree.
However, such bonds can be re-introduced by considering
neighboring basins of attraction using the following gap-filling
algorithm (this produces a critical network according to the
definition of Bader8)

1 Initialize: Let C be the critical tree (as determined via
the above algorithm).

2 Iterate: Iterate over pairs of maxima x, y ∈ ML(G).
3 Check already linked: If the path between x and y on C

passes through only two basins of attraction, then x and
y are already critically linked in C and we can continue
to the next iteration (go to step 2).

4 Identify basins: Let Bx (By) be the basin of attraction
containing the point x (y).

5 Check neighboring: If the basins Bx and By are not
adjacent (i.e., =B N z( )x

z By

, where N(z) are the

neighbors of z in G), then x and y are not critically
linked. Continue to the next iteration (go to step 2).

6 Construct subgraph: Construct the subgraph of G
containing only nodes in the basins of attraction Bx
and By as Gxy = G ∩ (Bx ∪ By) and its boundary B(Gxy) =
{z ∈ Gxy: ∃ z2 ∈ N(z) s.t z2 ∉ Gxy}.

7 Construct MST: Construct the maximum spanning tree
Mxy of Gxy. Identify the path Pxy linking x and y on Mxy.

8 Reject non-critical path: If, at any point, the path Pxy
touches the boundary (i.e., Pxy ∩ B(Gxy) ≠ ϕ), then x

Figure 10. Plots of the density isosurface(s) ρ(x) = ρiso = max(ρ)/2
for the H2 molecule under a magnetic field of 1 B0 perpendicular to
the bond, obtained as the maxima families of the auxiliary function
ρI(r) = exp(−|ρ(r) − ρiso|). Top: covalent bonding in the singlet
1σg

α1σg
β. Bottom: Non-covalent bonding of the 1σg

β1σg
β component of

the triplet state (which, under this magnetic field, is the ground
state33). The axes are in bohr.

Figure 11. Schematic demonstrating how critical paths can be
identified by pruning the maximum spanning tree of a graph
according to the algorithm presented in Section 2.6. Nodes that are
pruned are labeled by the algorithm iteration number at which they
are pruned.

Figure 12. Two paths (red and blue arrows), with similar critical
values, connecting nuclei A and B around the bonding network of a
benzene molecule.
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and y are not critically linked. Continue to the next
iteration of the loop (step 2).

9 Fill gap: P is a critical path in Gxy linking x and y and the
edges along P should be added to C. Continue to the
next iteration of the loop (step 2).

Step 8 identifies a non-critical path between neighboring
regions by noting that the critical point is pushed right to the
edge of the shared border of the regions (see path PBC in
Figure 13). In order for two regions to be critically linked, the

critical point must instead constitute a saddle point in the bulk
of the shared boundary (as is the case for paths PAC and PAB in
Figure 13).

We could have generated all of our critical paths by
following this gap-filling algorithm by starting instead with an
empty graph C. However, starting with the critical tree avoids
having to construct the subgraph Gxy for every pair x, y and is
thus more efficient.

2.6.2. Cleaving. By construction, the critical tree contains
and connects all local maxima in the network. However, as we
will see later, it is useful to be able to divide the critical tree
into sub-trees within which f(x) varies only weakly. This
process is called cleaving and it proceeds as follows

1 Initialize: Let C be the critical tree of f(x) on G and P(x,
y) be the path between points x and y on C.

2 Get paths: Let P be the set of all critical paths in C (i.e.,
paths between local maxima that do not pass through
other local maxima): = {

= { }}

P x y x y M G x

y P x y M G

x y

( , ) , ( ):

, ( , ) ( )

,

L

L

.

3 Set function scales: For each path, set a function scale as
the maximum endpoint value fscale(P(x, y)) = max( f(x),
f(y)).

4 Calculate deviations: For each path P(x, y), calculate a
deviation

=D P x y s z s z( ( , )) max ( ) min ( )z P z P (19)

where s(z) is the function value, scaled so the maximum
endpoint value is 1

=s z f z f f P f( ) ( ( ) )/( ( ) )min scale min (20)

and fmin = min{f(a): a ∈ G} is the global minimum function
value.

5 Cluster paths: Cluster the paths into a f lat set
= { < }P P D P t: ( )flat flat , where the function value

changes by a small amount (according to some tolerance
tflat) along the path. Consider the rest of the paths to be
non-f lat =P P/non flat flat. In the present work, a kernel
density estimate34 of the distribution of deviations
{ }D P P( ) is used to inform the choice of cluster
tolerance tflat.

6 Cleave non-flat paths: Remove the edges of each non-f lat
path from C.

In an alternative scheme, one might use the subgraphs of the
cleaved critical tree to define the maxima families when
identifying basins of attraction. However, the flood fill
technique introduced in Section 2.4 is more robust in practice
(as the flood fills are more densely connected over surface-like
maxima than a tree).
2.7. Critical Paths: Example Applications. 2.7.1. Bond

Paths. In Bader analysis, paths on the critical network are
called bond paths, and provide a unique (although not
necessarily optimal2) definition of molecular bonds.8 The
bond paths for benzene, evaluated using the algorithm given in
Section 2.6, are shown in Figure 14. All bonds are recovered
(one of which via the gap filling algorithm given in Section
2.6), leading to the familiar hexagonal benzene bonding
network. In Bader analysis, the critical points are known as
bond critical points�the values of the electron density at these
points are given in Table 1 alongside values calculated using
existing methods that require ρ(r) at arbitrary r.

2.7.2. Valence Charge Concentration and Depletion
Graphs. Charge concentration (∇2ρ < 0), or depletion (∇2ρ
> 0), is most relevant to chemistry when it occurs in the
valence region of an atom in a molecule. In particular, it has
been noted that the maxima of valence charge concentration
(depletion) correlate with the active regions for electrophilic
(nucleophilic) attack.37 Critical networks spanning these
maxima form the valence shell charge concentration/depletion
(VSCC/D) graphs.10 Such graphs can be easily examined by
constructing the critical network of −∇2ρ (charge concen-
tration) or ∇2ρ (charge depletion). An example for the VSCC
graph of a water molecule is shown in Figure 15 (top, cf.
Figure 3 of ref 10). This VSCC graph can clearly be seen to
connect the lone pairs either side of the oxygen atom. This
behavior is reflected in the critical network of the 90% ELF
isosurface (Figure 15, middle), where the lone pairs can be
very clearly seen as lobes aligned along the perpendicular
direction to the bonds. Such charge concentration arises from
distortions in the valence shell of the oxygen atom due to the
hydrogen atoms, which can be seen by looking at the maxima
families of |∇2ρ(r)| (Figure 15, bottom, valence shells are
shown in blue, cf. the shells of Ne in Figure 9)�note that core
shells (pink, e.g.) retain their spherical nature.

2.7.3. Stagnation Graphs. Applying a magnetic field to a
molecule induces a current density vector field xJ( ): 3 3.
The stagnation graph of J is the subset of 3 where |J(x)| = 0

Figure 13. Schematic of critical (PAC and PAB, blue) and non-critical
(PBC, red) paths linking three maxima of a function on the plane
(whose basins of attraction are separated by dashed lines). Note that
the non-critical path between B and C touches the boundary of the
union of their basins of attraction.
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and in general consists of isolated stagnation points and
extended stagnation lines.38 These stagnation graphs form a
compact representation of the topology of the vector field39

and have significance in ring-current models and NMR
spectra.40 The stagnation graph can be obtained as the critical
network of −|J|, as can be seen for a C2H2 molecule in Figure
16. This stagnation graph exhibits the same features as a more
detailed analysis at significantly reduced cost.41 The graph is

known to contain a stagnation line that bisects the molecule�
this can be seen in Figure 16, but is quite ragged due to the
decreasing density of DFT grid points as we move further from
the nuclei. In combination with this, the single-valued (|J| = 0)
and line-like (and therefore weakly connected) nature of
stagnation graphs make for a challenging test case for
topological analysis. In any case, the approximate stagnation
points determined via the present analysis on DFT grids can be
used as a starting point for the derivative-based optimization

Figure 14. Critical network of the electron density of a benzene
molecule, evaluated by post-processing the maximum spanning tree
on a DT according to the algorithms given in Section 2.6. The bond
that was filled in by the gap-filling algorithm is shown in red; the
remaining black lines are the pruned maximum spanning tree. To
improve the smoothness of the bonds, the DFT grid used for this plot
contains around twice the number of grid points as the coarser grids
used in the rest of this work. The axes are in bohr.

Table 1. Values of the Charge Density (in e/bohr3) for Each Bond Critical Point Identified in Benzene for Named Grid Sizes
in QUESTa

grid coarse standard fine ultrafine Multiwfn

points 102198 222314 420238 971062 82 million
C−H bonds 0.29263 0.29466 0.29448 0.29443 0.29440

0.29263 0.29466 0.29448 0.29443 0.29443
0.29263 0.29494 0.29461 0.29478 0.29472
0.29263 0.29494 0.29461 0.29478 0.29472
0.29443 0.29494 0.29461 0.29478 0.29476
0.29443 0.29494 0.29461 0.29478 0.29477

std. dev. 0.00085 0.00013 0.00006 0.00016 0.00016
C−C bonds 0.31146 0.31598 0.31664 0.31673 0.31630

0.31146 0.31598 0.31664 0.31673 0.31630
0.31146 0.31598 0.31664 0.31673 0.31630
0.31146 0.31598 0.31664 0.31673 0.31630
0.31640 0.31656 0.31732 0.31693 0.31640
0.31640 0.31656 0.31732 0.31693 0.31641

std. dev. 0.00233 0.00027 0.00032 0.00009 0.00005

aThe values can be clearly seen to be split into groups of 4 and 2 as a result of the DFT grid breaking sixfold symmetry. The level of theory is as
specified in Section 2.5.1 and results using QChem v5.035 and the Multiwfn package v3.836 are also given.

Figure 15. Topographical analysis for various properties of the water
molecule. The molecular geometry is shown as a dotted line.
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and refinement of the stagnation graph presented in ref 41.
Utilizing the starting points from the algorithms in the present
work can significantly reduce the cost of determining detailed
stagnation graphs using the derivative-based approaches.
2.8. Performance. 2.8.1. Convergence. Thanks to the

favorable properties of the DT (see Section 2.3.1), topological
properties, such as the number of maxima and saddle points
and so forth, converge almost instantly. Topographical
properties (such as Bader charges) also converge quickly, as
can be seen in Figures 17−19 where convergence is achieved
for DFT grids well before 1 million grid points. Results using

the uniform-grid Multiwfn package, v3.836 with charge
densities calculated using QChem, v5.035 are also shown
(the same numbers are obtained if Psi4 v1.6.142 is used in
place of QChem). Such uniform-grid methods routinely use
tens of millions of grid points43�we quote results obtained
using Multiwfn’s “Lunatic quality grid” (of order 10 million
points) and using an even larger custom grid (of order 100
million points, obtained by specifying a custom spacing),
which we denote as extra-lunatic, which was necessary to
achieve convergence in all cases.

DFT grids converge particularly quickly as they are designed
for rapid convergence of integral quantities, but even the
uniform grids shown in Figure 17 perform well thanks to their
connectivity with a triangulation, rather than a simple grid (see

Figure 16. Stagnation graph of C2H2, visualized as the cleaved critical
tree of −|J|. The axes are in bohr.

Figure 17. Convergence properties of the Bader charges of the oxygen
basin in a water molecule for different grids and graph ascent
methods. Data points are shown as crosses connected by solid lines
and the region within one standard deviation of an exponential fit is
shaded for each series. The infinite grid density limit is given for each
series as q∞, along with the fitting error. Uniform grids are scaled by
decreasing the grid spacing, DFT grids are scaled by reducing the
LMG tolerance and increasing the Lebedev degree simultaneously.
The charge density was calculated using HF with a primitive aug-cc-
pVDZ basis in Cartesian representation. Results obtained at the same
level of theory using QChem v5.035 and the Multiwfn package v3.836

are also shown�the same numbers are obtained if Psi4 v1.6.142 is
used in the place of QChem.

Figure 18. As Figure 17, but for the average of carbon basins in
benzene. The charge density is calculated following the method
outlined in Section 2.5.1. Only off-graph results are shown. In contrast
to the water case, the difference in Multiwfn results for the “lunatic”
and “extra-lunatic” grids is not resolvable on this scale.

Figure 19. Detail of basin-integrated quantities for the water molecule
using the off-graph method with DFT grids.
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also Figure 21). Performance on such uniform grids is
particularly important in calculations involving a plane-wave
basis set, where real-space properties are most naturally
evaluated on a uniform grid via a fast Fourier transformation.

While the graph algorithm exhibits rapid convergence with
grid size, the convergence is quite noisy�as can be seen in
detail in Figure 19. However, this noise is on the order of (or
smaller than, in the case of the kinetic energy) the difference
between the lunatic and extra-lunatic Multiwfn grids using 4
orders of magnitude fewer grid points than the latter. One
potential method to reduce this convergence noise would be to
assign fractional basin weights from each grid point to each
basin, as illustrated in Figure 20. Given that we already
construct the DT, which allows for rapid calculation of the
Voronoi tiling, the weighting method proposed in ref 26 would
be particularly suitable.

2.8.2. Grid Bias. As noted in ref 43 for uniform grids,
topographical properties (such as Bader charges) can be
affected by a grid bias, whereby a systematic error arises due to
geometrical properties of the arrangement of grid points. This
error is due to steepest-ascent paths on the graph diverging
from the true gradient path of the function, and, remarkably,
persists even in the infinite-grid-density limit. In particular,
gradient paths which are nearly, but not quite, aligned with
move directions on the graph will lead to gradually diverging
steepest-ascent paths, as can be seen in Figure 21, leading to
distorted region boundaries.

Reference 43 provides a solution to the grid bias problem by
allowing the trajectory of ascent paths to go “off-grid”. For the
graphs employed in this work, an analogous “off-graph”
method can be straightforwardly implemented by allowing
our ascent path to move freely in N , following the nearest
neighbour gradient gNN(x) given by

=f g x g x G( ) ( )NN (21)

where g(x) is the finite-difference gradient given by eq 6. The
nearest-neighbor lookup x → G (see eq 11) can be
implemented efficiently as a KD-tree.44 An example of the
resulting off-graph gradient paths is shown in Figure 22
(bottom). In Figure 17, it is clear that this technique corrects
the grid bias for a DFT grid so that it agrees with the (also

corrected) uniform result. The uniform grid shows significantly
less grid bias in Figure 17 due to the inclusion of diagonal
moves by the DT (the DFT grid also has such diagonal moves,
but they are less helpful as a significant radial bias remains).
These diagonal moves were not present in previous uniform-
grid-based approaches,43 which therefore exhibited signifi-
cantly larger grid bias than the present method. We note that
the methods developed by Rodriǵuez et al.19−21 are inherently
off-grid and so do not suffer from grid-bias at the cost of
requiring it to be possible to evaluate f and ∇f freely. In
contrast, eq 21 requires no evaluations of f beyond those given
as input (eq 1) at the expense of a KD-tree lookup.

2.8.3. Scaling. The rate-limiting step in performing
topological analysis via a graph over grid points is the
construction of the DT which scales as O[N log(N)] in the
number of grid points N.45 This scaling is reflected in our
calculation times (see Figure 23). Note that we use a largely
unoptimized python code, so the absolute time shown on the y
axis of Figure 23 could be improved relatively easily if desired,
but the scaling will remain O(N log(N)).

Figure 20. Illustration of how fractional region assignments might
help to reduce convergence noise.

Figure 21. Divergence of steepest on-graph paths from the true
gradient ∇f for different grids. At each step of the steepest-ascent
path, the gradient is followed as closely as possible on the graph, but
small errors at each step accumulate and the paths eventually diverge.
Note that the diagonal moves introduced into a uniform grid via
triangulation help (more so in 3D), but do not remove the problem.
The easiest way to see that this problem is scale-independent is by
considering the upper-left uniform grid case�the steepest ascent path
will always be “upward” (the horizontal moves will never be taken),
regardless of the grid spacing.
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3. SUMMARY
A method has been presented to extract topographical and
topological properties of a function defined on an arbitrary set
of points in space, strictly via post-processing with no
additional function evaluations. By connecting the points
with a neighborhood graph, well-defined and robust algorithms
were developed that allow for identification of local and global
maxima (both point-like and spatially extended), saddle points,
critical paths (and their critical points), and basins of
attraction. By simple transformations of the function, one
can also identify local and global minima, isosurfaces, and
stagnation graphs. Applications of the analysis were demon-
strated for a few problems in quantum chemistry including
Bader charge and bond analysis, identification of valence shells
and their charge concentration, location of lone pairs via the
ELF or the Laplacian of the electron density, and identification

of stagnation graphs of magnetically induced currents. All of
these investigations were carried out directly on a real-space
integration grid used in DFT calculations, allowing the results
to be easily, efficiently, and directly incorporated into DFT
calculations. The analysis was found to scale as O[N log(N)],
where N is the number of grid points and quantities of interest
were found to converge rapidly with N, requiring orders of
magnitude fewer grid points than uniform-grid methods.
Topographical results calculated using such DFT grids were
found to exhibit a significant “grid bias” when the algorithm
was constrained to stay on the graph. The source of this bias
was analyzed and found to be removed by allowing off-graph
moves.

■ APPENDIX A

Notation Primer
What follows is a primer on some mathematical constructs
used in the paper, with the hope that this will make it
accessible for a wider readership.

4.1. Set Notation. We make frequent use of set notation of
the following form

= { }S objects: conditions (A1)

where the colon can be read as “such that”. We also employ
common symbols for the set of real numbers and natural
numbers . For example, we could write the set of real
numbers between 0 and 1 (inclusive) as

= { }S x x: 0 1 (A2)

Which one could read as “The set of x in the real numbers
such that x is greater than or equal to 0 and less than or equal
to 1”. Here, the symbol ∈, read as “in”, indicates that x is a
member of the set of real numbers . Some other sets that
appear in the paper include the empty set ϕ and the set N of
all length-N vectors with real entries. We also employ several
set operations, in particular ∩, ∪ , and / for the intersection,
union, and subtraction of two sets, respectively, so that

Figure 22. Gradient paths generated using both the on-graph method
(top) and the off-graph method (bottom), described in Section 2.8.2,
for a function with two maxima on a uniform 2D grid.

Figure 23. Time scaling for Bader analysis of a water molecule as a
function of grid size for both a uniform and a DFT grid.
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= { }=
{ } { }=

{ } { }=

{ }
{ < }

S
x x

x x x x

x x x x

x x
x x

: 0 2

: 0 1 : 1 2

: 1 2 : 0 3

: 1 2
/ : 1 0 .

(A3)

A shorthand for such an interval on the real numbers is S =
[0, 2]. We also employ subscripted set operations such as

=

=

=

=

N S S S S S

N S S S S S

...

...

i
i N

i
i N

1
1 2 3

1
1 2 3 (A4)

minimizers over sets such as

= { }

= { = }

f x f x x S

f x x f x f x

min ( ) min ( ):

argmin ( ) : ( ) min ( )

x S

x S x S (A5)

and set relations such as the subset ⊂ and superset ⊃

= { }

= { }

S x x S x

S x x S

: 0 1 , “ is a subset of
”

: 0 1 , “ a superset of ”
(A6)

4.2. Graphs. A graph is a set of nodes that may be connected
by edges. The edges can be either undirected (the connection
goes both ways) or directed (the connection is only one-way),
as shown below.

The edges of a graph may also have associated weights
(resulting in a weighted graph). For example, a one-way road
network might be represented as a directed graph with
junctions given by nodes and roads represented by edges with
weights equal to the road lengths.

The notion of a subgraph is also used. A graph S is a
subgraph of G (S ⊂ G) if S can be obtained from G by
removing edges or nodes. Certain subgraphs are of particular
importance in the present work. In particular, we make
reference to the minimum spanning tree (MST) of a weighted,
undirected, and connected graph (connected here meaning
that it is possible to reach any node from any other node via a
path along edges). The MST is the connected subgraph that
minimizes the total edge weight, and so can be expressed as

=G eMST( ) argmin weight( )
s S G e s( ) edges( )C (A7)

where

= { }S G s G s( ) : is connectedC (A8)

is the set of connected subgraphs of G.
We describe several algorithms in the context of graphs. For

example, consider the f lood f ill algorithm, which visits nodes in
order of increasing distance from some initial node, described
step-wise as

1 Initialize: Let x be a node of the graph G and V = {x} be
the set of visited nodes.

2 Search: Find the set of nodes that are accessible from
nodes in V via the edges of G; S = ∪x∈VG(x), where
G(x) is the set of nodes accessible along edges of G from
x.

3 Identify unvisited: Of the set S, identify the unvisited
nodes U = S/V. If U = ϕ, terminate the algorithm.

4 Expand: V → V ∪ U.
5 Loop: Return to step 2.

Along with some of the set theory notation introduced
earlier, we have used an arrow →, which can be read as “goes
to” to signify updating a set. The progression of the flood fill
algorithm is illustrated for a simple graph below

The sets V, S, and U are shown at the end of step 3 for a
given iteration. Note how the set V gradually f loods the entire
graph, starting from the initial point.
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