832 research outputs found

    Episodic synchronization in dynamically driven neurons

    Get PDF
    We examine the response of type II excitable neurons to trains of synaptic pulses, as a function of the pulse frequency and amplitude. We show that the resonant behavior characteristic of type II excitability, already described for harmonic inputs, is also present for pulsed inputs. With this in mind, we study the response of neurons to pulsed input trains whose frequency varies continuously in time, and observe that the receiving neuron synchronizes episodically to the input pulses, whenever the pulse frequency lies within the neuron's locking range. We propose this behavior as a mechanism of rate-code detection in neuronal populations. The results are obtained both in numerical simulations of the Morris-Lecar model and in an electronic implementation of the FitzHugh-Nagumo system, evidencing the robustness of the phenomenon.Comment: 7 pages, 8 figure

    Safety in Buildings

    Get PDF
    Building codes are essentially sets of safety regulations in respect of structure, fire, and health. They were originally developed in response to frequently demonstrated hazards of structural collapse, catastrophic fires, and the spread of disease. Closely related to the life of the community, these matters became municipal responsibilities. They remain so today, being delegated by the provinces which have the over-all responsibility for civil rights, including safety

    Comparison of optical model results from a microscopic Schr\"odinger approach to nucleon-nucleus elastic scattering with those from a global Dirac phenomenology

    Full text link
    Comparisons are made between results of calculations for intermediate energy nucleon-nucleus scattering for 12C, 16O, 40Ca, 90Zr, and 208Pb, using optical potentials obtained from global Dirac phenomenology and from a microscopic Schr\"odinger model. Differential cross sections and spin observables for scattering from the set of five nuclei at 65 MeV and 200 MeV have been studied to assess the relative merits of each approach. Total reaction cross sections from proton-nucleus and total cross sections from neutron-nucleus scattering have been evaluated and compared with data for those five targets in the energy range 20 MeV to 800 MeV. The methods of analyses give results that compare well with experimental data in those energy regimes for which the procedures are suited.Comment: 22 pages, 12 figure

    Oxygen Isotope Measurements of a Rare Murchison Type A CAI and Its Rim

    Get PDF
    Ca-, Al-rich inclusions (CAIs) from CV chondrites commonly show oxygen isotope heterogeneity among different mineral phases within individual inclusions reflecting the complex history of CAIs in both the solar nebula and/or parent bodies. The degree of isotopic exchange is typically mineral-specific, yielding O-16-rich spinel, hibonite and pyroxene and O-16-depleted melilite and anorthite. Recent work demonstrated large and systematic variations in oxygen isotope composition within the margin and Wark-Lovering rim of an Allende Type A CAI. These variations suggest that some CV CAIs formed from several oxygen reservoirs and may reflect transport between distinct regions of the solar nebula or varying gas composition near the proto-Sun. Oxygen isotope compositions of CAIs from other, less-altered chondrites show less intra-CAI variability and 16O-rich compositions. The record of intra-CAI oxygen isotope variability in CM chondrites, which commonly show evidence for low-temperature aqueous alteration, is less clear, in part because the most common CAIs found in CM chondrites are mineralogically simple (hibonite +/- spinel or spinel +/- pyroxene) and are composed of minerals less susceptible to O-isotopic exchange. No measurements of the oxygen isotope compositions of rims on CAIs in CM chondrites have been reported. Here, we present oxygen isotope data from a rare, Type A CAI from the Murchison meteorite, MUM-1. The data were collected from melilite, hibonite, perovskite and spinel in a traverse into the interior of the CAI and from pyroxene, melilite, anorthite, and spinel in the Wark-Lovering rim. Our objectives were to (1) document any evidence for intra-CAI oxygen isotope variability; (2) determine the isotopic composition of the rim minerals and compare their composition(s) to the CAI interior; and (3) compare the MUM-1 data to oxygen isotope zoning profiles measured from CAIs in other chondrites

    Relevance of pseudospin symmetry in proton-nucleus scattering

    Full text link
    The manifestation of pseudospin-symmetry in proton-nucleus scattering is discussed. Constraints on the pseudospin-symmetry violating scattering amplitude are given which require as input cross section and polarization data, but no measurements of the spin rotation function. Application of these constraints to p-58Ni and p-208Pb scattering data in the laboratory energy range of 200 MeV to 800 MeV, reveals a significant violation of the symmetry at lower energies and a weak one at higher energies. Using a schematic model within the Dirac phenomenology, the role of the Coulomb potential in proton-nucleus scattering with regard to pseudospin symmetry is studied. Our results indicate that the existence of pseudospin-symmetry in proton-nucleus scattering is questionable in the whole energy region considered and that the violation of this symmetry stems from the long range nature of the Coulomb interaction.Comment: 22 pages including 9 figures, correction of 1 reference, revision of abstract and major modification of chapter 4, Fig. 6, and Fig. 7; addition of Fig. 8 and Fig.

    Branching dendrites with resonant membrane: a “sum-over-trips” approach

    Get PDF
    Dendrites form the major components of neurons. They are complex branching structures that receive and process thousands of synaptic inputs from other neurons. It is well known that dendritic morphology plays an important role in the function of dendrites. Another important contribution to the response characteristics of a single neuron comes from the intrinsic resonant properties of dendritic membrane. In this paper we combine the effects of dendritic branching and resonant membrane dynamics by generalising the “sum-over-trips” approach (Abbott et al. in Biol Cybernetics 66, 49–60 1991). To illustrate how this formalism can shed light on the role of architecture and resonances in determining neuronal output we consider dual recording and reconstruction data from a rat CA1 hippocampal pyramidal cell. Specifically we explore the way in which an Ih current contributes to a voltage overshoot at the soma
    corecore