65 research outputs found

    Mössbauer study of some novel iron-bis-glyoxime and iron-tris-glyoxime complexes

    Get PDF
    Dioximes as ligands are used as analytical reagents and serve as models for biological systems as well as catalysts in chemical processes. A number of novel mixed complexes of the type [Fe(DioxH)2(amine)2] have been prepared and characterised by FTIR, 57Fe Mössbauer and mass spectroscopy by us. We have found strong Fe–N donor acceptor interactions and iron occurred in low-spin FeII state in all complexes. Later, we have also found that the incorporation of branching alkyl chains (isopropyl) in the complexes alters the Fe–N bond length and results in high-spin iron(II) state [1, 2]. The question arises: can the spin state of iron be manipulated generally by replacing the short alkyl chains with high volume demand ones in Fe-azomethine-amine complexes? To answer the question we have synthetized novel iron-bis-glioxime and iron-tris-gloxime complexes when long chain alkyl or aromatic ligands replaced the short alkyl ones and studied by 57Fe Mössbauer spectroscopy, MS, FTIR, UV-VIS, TG-DTA-DTG and XRD methods. Novel iron-bis-glyoxime and iron-tris-glyoxime type complexes, [Fe(Diethyl-Diox)3(BOH)2], [Fe(Diethyl-Diox)3(BOEt)2] and [Fe(phenyl-Me-Diox)3(BOEt)2], were synthesized similarly as described in [2]. The FTIR, UV-VIS, TG-DTA-DTG and MS measurements indicated that the expected novel complexes could be successfully synthesized

    Inhibition of Pediatric Glioblastoma Tumor Growth by the Anti-Cancer Agent OKN-007 in Orthotopic Mouse Xenografts

    Get PDF
    We thank the Peggy and Charles Stephenson Cancer Center at the University of Oklahoma, Oklahoma City, OK, for funding, who received an Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health under grant number P20 GM103639 for the use of the Histology and Immunohistochemistry Core for providing immunohistochemistry and photographic services. This work was also supported by Oklahoma State University, Center of Veterinary Health Science (Support Grant AE-1-50060 to P.C.S.), the Musella Foundation (R.A.T.), and the Childhood Brain Tumor Foundation (R.A.T.).Pediatric glioblastomas (pGBM), although rare, are one of the leading causes of cancer-related deaths in children, with tumors essentially refractory to existing treatments. Here, we describe the use of conventional and advanced in vivo magnetic resonance imaging (MRI) techniques to assess a novel orthotopic xenograft pGBM mouse (IC-3752GBM patient-derived culture) model, and to monitor the effects of the anti-cancer agent OKN-007 as an inhibitor of pGBM tumor growth. Immunohistochemistry support data is also presented for cell proliferation and tumor growth signaling. OKN-007 was found to significantly decrease tumor volumes (p<0.05) and increase animal survival (p<0.05) in all OKN-007-treated mice compared to untreated animals. In a responsive cohort of treated animals, OKN-007 was able to significantly decrease tumor volumes (p<0.0001), increase survival (p<0.001), and increase diffusion (p<0.01) and perfusion rates (p<0.05). OKN-007 also significantly reduced lipid tumor metabolism in responsive animals (Lip1.3 and Lip0.9)-to-creatine ratio (p<0.05), as well as significantly decrease tumor cell proliferation (p<0.05) and microvessel density (p<0.05). Furthermore, in relationship to the PDGFRα pathway, OKN-007 was able to significantly decrease SULF2 (p<0.05) and PDGFR-α (platelet-derived growth factor receptor-α) (p<0.05) immunoexpression, and significantly increase decorin expression (p<0.05) in responsive mice. This study indicates that OKN-007 may be an effective anti-cancer agent for some patients with pGBMs by inhibiting cell proliferation and angiogenesis, possibly via the PDGFRα pathway, and could be considered as an additional therapy for pediatric brain tumor patients.Yeshttp://www.plosone.org/static/editorial#pee

    Glioma: experimental models and reality

    Get PDF

    NUMB does not impair growth and differentiation status of experimental gliomas

    No full text
    © 2011 Elsevier Inc. All rights reserved
    corecore