4,517 research outputs found

    A Semiclassical Approach to Fusion Reactions

    Full text link
    The semiclassical method of Alder and Winther is generalized to study fusion reactions. As an illustration, we evaluate the fusion cross section in a schematic two-channel calculation. The results are shown to be in good agreement with those obtained with a quantal Coupled-Channels calculation. We suggest that in the case of coupling to continuum states this approach may provide a simpler alternative to the Continuum Discretized Coupled-Channels method.Comment: 6 pages, 1 figure, invited talk at the International Symposium "A new era of Nuclear Structure Physics", Niigata, Japan, Nov. 19-22 200

    A consistent four-body CDCC model of low-energy reactions: Application to 9Be + 208Pb

    Full text link
    We investigate the 9^9Be + 208^{208}Pb elastic scattering, breakup and fusion at energies around the Coulomb barrier. The three processes are described simultaneously, with identical conditions of calculations. The 9^{9}Be nucleus is defined in an α+α\alpha + \alpha + n three-body model, using the hyperspherical coordinate method. We first analyze spectroscopic properties of 9^9Be, and show that the model provides a fairly good description of the low-lying states. The scattering with 208^{208}Pb is then studied with the Continuum Discretized Coupled Channel (CDCC) method, where the α+α\alpha+\alpha + n continuum is approximated by a discrete number of pseudostates. Optical potentials for the α\alpha+ 208^{208}Pb and n+ 208^{208}Pb systems are taken from the literature. We present elastic-scattering and fusion cross sections at different energies.Comment: 8 pages, 3 figures, Proceedings of the International Conference on Nucleus-Nucleus Collisions, NN 2015, Catania-Italy. arXiv admin note: substantial text overlap with arXiv:1410.641

    Transverse Isotropy in Identical Particle Scattering

    Full text link
    It is pointed out that the cross section for the scattering of identical charged bosons is isotropic over a broad angular range around 90 degrees when the Sommerfeld parameter has a critical value, which depends exclusively on the spin of the particle. A discussion of systems where this phenomenon can be observed is presented.Comment: 8 pages, RevTeX format, 2 figures (.eps format

    Improved WKB approximation for quantum tunneling: Application to heavy ion fusion

    Full text link
    In this paper we revisit the one-dimensional tunneling problem. We consider Kemble's approximation for the transmission coefficient. We show how this approximation can be extended to above-barrier energies by performing the analytical continuation of the radial coordinate to the complex plane. We investigate the validity of this approximation by comparing their predictions for the cross section and for the barrier distribution with the corresponding quantum mechanical results. We find that the extended Kemble's approximation reproduces the results of quantum mechanics with great accuracy.Comment: 8 pages, 6 figures, in press, in European. Phys. Journal A (2017

    Causal Classical Theory of Radiation Damping

    Get PDF
    It is shown how initial conditions can be appropriately defined for the integration of Lorentz-Dirac equations of motion. The integration is performed \QTR{it}{forward} in time. The theory is applied to the case of the motion of an electron in an intense laser pulse, relevant to nonlinear Compton scattering.Comment: 8 pages, 2 figure

    Approximate transmission coefficients in heavy ion fusion

    Full text link
    In this paper we revisit the one-dimensional tunnelling problem. We consider different approximations for the transmission through the Coulomb barrier in heavy ion collisions at near-barrier energies. First, we discuss approximations of the barrier shape by functional forms where the transmission coefficient is known analytically. Then, we consider Kemble's approximation for the transmission coefficient. We show how this approximation can be extended to above-barrier energies by performing the analytical continuation of the radial coordinate to the complex plane. We investigate the validity of the different approximations considered in this paper by comparing their predictions for transmission coefficients and cross sections of three heavy ion systems with the corresponding quantum mechanical results.Comment: 12 pages, 6 figure

    A study of local approximation for polarization potentials

    Full text link
    We discuss the derivation of an equivalent \textit{l}-independent polarization potential for use in the optical Schr\"{o}dinger equation that describes the elastic scattering of heavy ions. Three diffferent methods are used for this purpose. Application of our theory to the low energy scattering of the halo nucleus 11^{11}Li from a 12^{12}C target is made. It is found that the notion of \textit{l}-independent polarization potential has some validity but can not be a good substitute for the \textit{l}-dependent local equivalent Feshbach polarization potential.Comment: 8 pages, 4 figure

    Minimum-Risk Structured Learning of Video Summarization

    Full text link
    © 2017 IEEE. Video summarization is an important multimedia task for applications such as video indexing and retrieval, video surveillance, human-computer interaction and video 'storyboarding'. In this paper, we present a new approach for automatic summarization of video collections that leverages a structured minimum-risk classifier and efficient submodular inference. To test the accuracy of the predicted summaries we utilize a recently-proposed measure (V-JAUNE) that considers both the content and frame order of the original video. Qualitative and quantitative tests over two action video datasets - the ACE and the MSR DailyActivity3D datasets - show that the proposed approach delivers more accurate summaries than the compared minimum-risk and syntactic approaches
    corecore