16 research outputs found

    Developing a fuzzy logic model for predicting soil inltration rate based on soil texture properties

    Get PDF
    The prediction of the soil infiltration rate is advantageous in hydrological design, watershed management, irrigation, and other agricultural studies. Various techniques have been widely used for this with the aim of developing more accurate models; however, the improvement of the prediction accuracy is still an acute problem faced by decision makers in many areas. In this paper, an intelligent model based on a fuzzy logic system (FLS) was developed to obtain a more accurate predictive model for the soil infiltration rate than that generated by conventional methods. The input variables that were considered in the fuzzy model included the silt and clay contents. The developed fuzzy model was tested against both the observed data and multiple linear regression (MLR). The comparison of the developed fuzzy model and MLR model indicated that the fuzzy model can simulate the infiltration process quite well. The coefficient of determination, root mean square error, mean absolute error, model efficiency, and overall index of the fuzzy model were 0.953, 1.53, 1.28, 0.953, and 0.954, respectively. The corresponding MLR model values were 0.913, 2.37, 1.92, 0.913, and 0.914, respectively. The sensitivity results indicated that the clay content is the most influential factor when the FLS-based modelling approach is used for predicting the soil infiltration rate.Keywords: FLS, infiltration rate, MLR, modelling, sensitivity analysi

    Automated irrigation systems for wheat and tomato crops in arid regions

    Get PDF
    Automated irrigation systems (AISs) are critical for the sustainability of irrigated farming systems, considering the present water crisis in Saudi Arabia. This study investigated whether electronic controllers in irrigation systems effectively save water. The study also assessed the effect of these controllers on crop yield using drip and sprinkler irrigation systems in severely arid climate conditions. Evapotranspiration (ET) controllers were installed in experimental fields of wheat (Triticum aestivum) and tomato (Solanum lycopersicum Mill.) crops for 2 successive seasons. The results revealed that the water use efficiency (WUE) and irrigation water use efficiency (IWUE) were typically higher in the AIS than in the conventional irrigation control system (CIS). Under the AIS treatment, the WUE and IWUE values were 1.64 and 1.37 k·gm-3 for wheat, and 7.50 and 6.50 kg·m-3 for tomato crops; under the CIS treatment the values were 1.47 and 1.21 kg·m-3 for wheat and 5.72 and 4.70 kg·m-3 for tomatoes, respectively. Therefore, the AIS provided significant advantages in both water savings and crop yields by utilising up to 26% less water than the CIS, and simultaneously generating higher total yields. The automated irrigation system technique may be a valuable tool for conserving water and scheduling irrigation for wheat and tomato crops, and may be extendable to other similar agricultural crops.Keywords: autonomous control, evapotranspiration controller, water conservation, sprinkler and drip irrigation, water-use efficiency, arid region

    Adoption of an intelligent irrigation scheduling technique and its effect on water use efficiency for tomato crops in arid regions

    Get PDF
    Abstract The intelligent irrigation technique is a valuable tool for scheduling irrigation and quantifying water required by plants. This study was carried out during two successive seasons spanning 2010 and 2011. The main objectives were to investigate the effectiveness of the intelligent irrigation system (IIS) on water use efficiency (WUE), irrigation water use efficiency (IWUE) and to assess its potential for monitoring the water status and irrigation schedule of a tomato crop cultivated under severely arid climate conditions. The intelligent irrigation system was implemented and tested under a drip irrigation system for the irrigation of tomato crops (Lycopersicon esculentum Mill, GS-12). The results obtained with this system were consequently compared with the control system (ICS), which utilized an automatic weather station. The results reveal that plant growth parameters and water conservation were significantly affected by IIS irrigation. The water use efficiency under IIS was generally higher (7.33 kg m -3 ) compared to that under ICS (5.33 kg m -3 ), resulting in maximal water use efficiency for both growing seasons (average 6.44 kg m -3 ). The application of IIS technology therefore provides significant advantages in terms of both crop yield and WUE. In addition, IIS conserves 26% of the total irrigation water compared to the control treatment, and simultaneously generates higher total yields. These results show that this technique could be a flexible, practical tool for improving scheduled irrigation. Hence, this technology can therefore be recommended for efficient automated irrigation systems because it produces higher yield and conserves large amounts of irrigation water. The intelligent irrigation technique may provide a valuable tool for scheduling irrigation in tomato farming and may be extendable for use in other similar agricultural crops

    A Comparative Study of Standard Center Pivot and Growers-Based Modified Center Pivot for Evaluating Uniformity Coefficient and Water Distribution

    No full text
    The center pivot irrigation system is a type of irrigation technology used to apply water effectively and uniformly over a wide variety of areas and topographies. These irrigation systems’ uniformity of water application greatly affects water use, energy consumption, and crop production. Performance tests of the standard lateral galvanized and modified polyethylene plastic pipes in the center pivot irrigation systems were conducted in different regions of Saudi Arabia. Water distribution depths along the laterals, coefficient of uniformity (CU), and distribution uniformity of the low quarter (DU) were determined. The results revealed that profiles of water distribution ranged from 4 to 14 mm for the standard-center pivot irrigation systems, while those for the modified-center pivot irrigation systems ranged from 6.5 to 50 mm. Standard-center pivot irrigation systems’ CU values ranged from 74 to 90%, with an average of 86%. In comparison, the modified-center pivot irrigation systems’ CU values ranged from 62 to 83%, with an average of 78%. The DU values ranged from 60 to 82% for the standard-center pivot irrigation systems, with an overall average of 77%. For the modified-center pivot irrigation systems, the DU values, in contrast, ranged from 31 to 75%, with an average of 65%. Thus, the accuracy and uniformity of the standard-center pivot irrigation systems are superior to those that have been modified. Additionally, a statistical model was developed to investigate the relationship between the water losses and the main climatic factors under field operating conditions. Therefore, the study results are expected to draw attention to standard lateral pipes’ value on the one hand and demonstrate the detrimental consequences of growers’ incorrect practices in pivot irrigation systems, motivating them to take strong action against these activities, on the other hand

    Integrating GIS-Based MCDA Techniques and the SCS-CN Method for Identifying Potential Zones for Rainwater Harvesting in a Semi-Arid Area

    No full text
    An increasing scarcity of water, as well as rapid global climate change, requires more effective water conservation alternatives. One promising alternative is rainwater harvesting (RWH). Nevertheless, the evaluation of RWH potential together with the selection of appropriate sites for RWH structures is significantly difficult for the water managers. This study deals with this difficulty by identifying RWH potential areas and sites for RWH structures utilizing geospatial and multi-criteria decision analysis (MCDA) techniques. The conventional data and remote sensing data were employed to set up needed thematic layers using ArcGIS software. The soil conservation service curve number (SCS-CN) method was used to determine surface runoff, centered on which yearly runoff potential map was produced in the ArcGIS environment. Thematic layers such as drainage density, slope, land use/cover, and runoff were allotted appropriate weights to produced RWH potential areas and zones appropriate for RWH structures maps of the study location. Results analysis revealed that the outcomes of the spatial allocation of yearly surface runoff depth ranging from 83 to 295 mm. Moreover, RWH potential areas results showed that the study areas can be categorized into three RWH potential areas: (a) low suitability, (b) medium suitability, and (c) high suitability. Nearly 40% of the watershed zone falls within medium and high suitability RWH potential areas. It is deduced that the integrated MCDA and geospatial techniques provide a valuable and formidable resource for the strategizing of RWH within the study zones

    Symposium no. 01 Paper no. 1717 Presentation: poster 1717-1

    No full text
    The effect of variable sprinkler water application rates on bare soil and the response of the soil infiltration after exposure to a sequence of irrigation events were investigated. A simple empirical model based on the Kostiakov equation was presented. This model will predict soil infiltration rate under variable application rates and a sequence of irrigation events. The validity of the model was tested and supported by the results of laboratory experiments

    Developing a fuzzy logic model for predicting soil infiltration rate based on soil texture properties

    Get PDF
    The prediction of the soil infiltration rate is advantageous in hydrological design, watershed management, irrigation, and other agricultural studies. Various techniques have been widely used for this with the aim of developing more accurate models; however, the improvement of the prediction accuracy is still an acute problem faced by decision makers in many areas. In this paper, an intelligent model based on a fuzzy logic system (FLS) was developed to obtain a more accurate predictive model for the soil infiltration rate than that generated by conventional methods. The input variables that were considered in the fuzzy model included the silt and clay contents. The developed fuzzy model was tested against both the observed data and multiple linear regression (MLR). The comparison of the developed fuzzy model and MLR model indicated that the fuzzy model can simulate the infiltration process quite well. The coefficient of determination, root mean square error, mean absolute error, model efficiency, and overall index of the fuzzy model were 0.953, 1.53, 1.28, 0.953, and 0.954, respectively. The corresponding MLR model values were 0.913, 2.37, 1.92, 0.913, and 0.914, respectively. The sensitivity results indicated that the clay content is the most influential factor when the FLS-based modelling approach is used for predicting the soil infiltration rate

    Evaluating two irrigation controllers under subsurface drip irrigated tomato crop

    No full text
    Smart systems could be used to improve irrigation scheduling and save water under Saudi Arabia’s present water crisis scenario. This study investigated two types of evapotranspiration-based smart irrigation controllers, SmartLine and Hunter Pro-C2, as promising tools for scheduling irrigation and quantifying plants’ water requirements to achieve water savings. The effectiveness of these technologies in reducing the amount of irrigation water was compared with the conventional irrigation scheduling method as a control treatment. The two smart irrigation sensors were used for subsurface irrigation of a tomato crop (cv. Nema) in an arid region. The results showed that the smart controllers significantly reduced the amount of applied water and increased the crop yield. In general, the Hunter Pro-C2 system saved the highest amount of water and produced the highest crop yield, resulting in the highest water irrigation efficiency compared with the SmartLine controller and the traditional irrigation schedule. It can be concluded that the application of advanced scheduling irrigation techniques such as the Hunter controller under arid conditions can realise economic benefits by saving large amounts of irrigation water

    Evaluating two irrigation controllers under subsurface drip irrigated tomato crop

    Get PDF
    Smart systems could be used to improve irrigation scheduling and save water under Saudi Arabia’s present water crisis scenario. This study investigated two types of evapotranspiration-based smart irrigation controllers, SmartLine and Hunter Pro-C2, as promising tools for scheduling irrigation and quantifying plants’ water requirements to achieve water savings. The effectiveness of these technologies in reducing the amount of irrigation water was compared with the conventional irrigation scheduling method as a control treatment. The two smart irrigation sensors were used for subsurface irrigation of a tomato crop (cv. Nema) in an arid region. The results showed that the smart controllers significantly reduced the amount of applied water and increased the crop yield. In general, the Hunter Pro-C2 system saved the highest amount of water and produced the highest crop yield, resulting in the highest water irrigation efficiency compared with the SmartLine controller and the traditional irrigation schedule. It can be concluded that the application of advanced scheduling irrigation techniques such as the Hunter controller under arid conditions can realise economic benefits by saving large amounts of irrigation water

    Water-Saving Irrigation Strategies in Potato Fields: Effects on Physiological Characteristics and Water Use in Arid Region

    No full text
    In this study, field experiments were conducted to investigate the effects of two water-saving practices—partial root-zone drying (PRD) and deficit irrigation (DI)—on potato growth and yield in comparison with full irrigation (FI). The required FI amount was applied to the potato plants to enable 100% crop evapotranspiration, and the plants received 70% and 50% of the irrigation amount of FI for DI (DI70 and DI50) and PRD (PRD70 and PRD50), respectively. The physiological characteristics of the potatoes during the 2014–2015 seasons indicated that the relative chlorophyll contents were not significantly higher for the DI and PRD treatments than for the FI treatment. The DI50 had the lowest net photosynthesis rate (p < 0.05) while DI50 and PRD50 had significantly lower stomatal conductance (gs) values in both years. Meanwhile, the values of the PRD treatments were lower than those of DI treatments based on the transpiration rates. The xylem (abscisic acid) based on PRD50 had an average increase of 0.38 mol/m2 s due to decreasing gs values compared with other water-saving irrigation treatments. However, the FI and DI treatments had increased fresh tuber yields compared with the yields of PRD treatments. Furthermore, the PRD70 and PRD50 treatments significantly reduced the water productivity (WP) values by 30.16% and 41.32%, respectively, relative to that of FI
    corecore