6,976 research outputs found

    Theory of Complex Scattering Lengths

    Full text link
    We derive a generalized Low equation for the T-matrix appropriate for complex atom-molecule interaction. The properties of this new equation at very low energies are studied and the complex scattering length and effective range are derived.Comment: 9 page

    Toward a microscopic description of reactions involving exotic nuclei

    Full text link
    We propose an extension of the Continuum Discretized Coupled Channels (CDCC) method, where the projectile is described by a microscopic cluster model. This microscopic generalization (MCDCC) only relies on nucleon-target interactions, and therefore presents an important predictive power. Core excitations can be included without any further parameter. As an example we investigate the \lipb elastic scattering at Elab=27E_{lab}=27 and 35 MeV. The 7^7Li nucleus is known to present an α+t\alpha+t cluster structure, and is well described by the Resonating Group Method. An excellent agreement is obtained for the \lipb elastic cross sections, provided that breakup channels are properly included. We also present an application to inelastic scattering, and discuss future applications of the MCDCC.Comment: 5 pages, 3 figures, Physical Review Letters (2013) in pres

    Ultra cold neutrons: determination of the electric dipole moment and gravitational corrections via matter wave interferometry

    Full text link
    We propose experiments using ultra cold neutrons which can be used to determine the electric dipole moment of the neutron itself, a well as to test corrections to gravity as they are foreseen by string theories and Kaluza-Klein mechanisms.Comment: 3 pages, no figures, reference adde

    Condensed vortex ground states of rotating Bose-Einstein condensate in harmonic atomic trap

    Full text link
    We study a system of NN Bose atoms trapped by a symmetric harmonic potential, interacting via weak central forces. Considering the ground state of the rotating system as a function of the two conserved quantities, the total angular momentum and its collective component, we develop an algebraic approach to derive exact wave functions and energies of these ground states. We describe a broad class of the interactions for which these results are valid. This universality class is defined by simple integral condition on the potential. Most of the potentials of practical interest which have pronounced repulsive component belong to this universality class.Comment: 34 pages, 10 ps figures, minor revisions, to be publ. in Ann. Phy

    Chaotic behavior of the Compound Nucleus, open Quantum Dots and other nanostructures

    Full text link
    It is well established that physical systems exhibit both ordered and chaotic behavior. The chaotic behavior of nanostructure such as open quantum dots has been confirmed experimentally and discussed exhaustively theoretically. This is manifested through random fluctuations in the electronic conductance. What useful information can be extracted from this noise in the conductance? In this contribution we shall address this question. In particular, we will show that the average maxima density in the conductance is directly related to the correlation function whose characteristic width is a measure of energy- or applied magnetic field- correlation length. The idea behind the above has been originally discovered in the context of the atomic nucleus, a mesoscopic system. Our findings are directly applicable to graphene.Comment: 10 pages, 5 figures. Contribution to: "4th International Workshop on Compound-Nuclear Reactions and Related Topics (CNR*13)", October 7-11, 2013, Maresias, Brazil. To appear in the proceeding

    Optimal network topologies for information transmission in active networks

    Get PDF
    This work clarifies the relation between network circuit (topology) and behavior (information transmission and synchronization) in active networks, e.g. neural networks. As an application, we show how to determine a network topology that is optimal for information transmission. By optimal, we mean that the network is able to transmit a large amount of information, it possesses a large number of communication channels, and it is robust under large variations of the network coupling configuration. This theoretical approach is general and does not depend on the particular dynamic of the elements forming the network, since the network topology can be determined by finding a Laplacian matrix (the matrix that describes the connections and the coupling strengths among the elements) whose eigenvalues satisfy some special conditions. To illustrate our ideas and theoretical approaches, we use neural networks of electrically connected chaotic Hindmarsh-Rose neurons.Comment: 20 pages, 12 figure

    How large is the spreading width of a superdeformed band?

    Get PDF
    Recent models of the decay out of superdeformed bands can broadly be divided into two categories. One approach is based on the similarity between the tunneling process involved in the decay and that involved in the fusion of heavy ions, and builds on the formalism of nuclear reaction theory. The other arises from an analogy between the superdeformed decay and transport between coupled quantum dots. These models suggest conflicting values for the spreading width of the decaying superdeformed states. In this paper, the decay of superdeformed bands in the five even-even nuclei in which the SD excitation energies have been determined experimentally is considered in the framework of both approaches, and the significance of the difference in the resulting spreading widths is considered. The results of the two models are also compared to tunneling widths estimated from previous barrier height predictions and a parabolic approximation to the barrier shape
    • 

    corecore