4,129 research outputs found

    A study of local approximation for polarization potentials

    Full text link
    We discuss the derivation of an equivalent \textit{l}-independent polarization potential for use in the optical Schr\"{o}dinger equation that describes the elastic scattering of heavy ions. Three diffferent methods are used for this purpose. Application of our theory to the low energy scattering of the halo nucleus 11^{11}Li from a 12^{12}C target is made. It is found that the notion of \textit{l}-independent polarization potential has some validity but can not be a good substitute for the \textit{l}-dependent local equivalent Feshbach polarization potential.Comment: 8 pages, 4 figure

    Deformed Gaussian Orthogonal Ensemble Analysis of the Interacting Boson Model

    Full text link
    A Deformed Gaussian Orthogonal Ensemble (DGOE) which interpolates between the Gaussian Orthogonal Ensemble and a Poissonian Ensemble is constructed. This new ensemble is then applied to the analysis of the chaotic properties of the low lying collective states of nuclei described by the Interacting Boson Model (IBM). This model undergoes a transition order-chaos-order from the SU(3)SU(3) limit to the O(6)O(6) limit. Our analysis shows that the quantum fluctuations of the IBM Hamiltonian, both of the spectrum and the eigenvectors, follow the expected behaviour predicted by the DGOE when one goes from one limit to the other.Comment: 10 pages, 4 figures (avaiable upon request), IFUSP/P-1086 Replaced version: in the previous version the name of one of the authors was omitte

    Jensen Inequalities for Tunneling Probabilities in Complex Systems

    Full text link
    The Jensen theorem is used to derive inequalities for semi-classical tunneling probabilities for systems involving several degrees of freedom. These Jensen inequalities are used to discuss several aspects of sub-barrier heavy-ion fusion reactions. The inequality hinges on general convexity properties of the tunneling coefficient calculated with the classical action in the classically forbidden region.Comment: 11 pages, 2 figure

    Prevalence of Acute Malnutrition in Pre-School Children in a Rural Area of Northern Sudan

    Get PDF
    Objectives: To determine the prevalence of acute malnutrition in pre-school children in Karma Albald village, Northern Sudan. Design: Prospective observational study. Setting: Four kindergartens in Karma Albald village, Northern Sudan. Subjects: Pre-school children attending kindergartens in Karma Albald village (n = 163). Results: Using the World Health Organization case definitions and weight-for-height growth chart, wasting was observed in 29 of 163 children (17.8%); nine children had severe wasting. Socio-economic data showed that 70 children (43%) were from large families (families with four or more children) and 40 were from ‘poor’ families; 21 fathers and 12 mothers had poor literacy. All of the risk factors associated with malnutrition that were studied (that is, economic status, family size, order of the child in the family, and other socio-economic indicators) did not reach statistical significance. Conclusions: The prevalence of malnutrition was high in this cohort. Effective interventions are needed to tackle this major child health problem

    Nonlinear Schrodinger equation with chaotic, random, and nonperiodic nonlinearity

    Full text link
    In this paper we deal with a nonlinear Schr\"{o}dinger equation with chaotic, random, and nonperiodic cubic nonlinearity. Our goal is to study the soliton evolution, with the strength of the nonlinearity perturbed in the space and time coordinates and to check its robustness under these conditions. Comparing with a real system, the perturbation can be related to, e.g., impurities in crystalline structures, or coupling to a thermal reservoir which, on the average, enhances the nonlinearity. We also discuss the relevance of such random perturbations to the dynamics of Bose-Einstein Condensates and their collective excitations and transport.Comment: 4 pages, 6 figure

    Ultrawide phononic band gap for combined in-plane and out-of-plane waves

    Full text link
    We consider two-dimensional phononic crystals formed from silicon and voids, and present optimized unit cell designs for (1) out-of-plane, (2) in-plane and (3) combined out-of-plane and in-plane elastic wave propagation. To feasibly search through an excessively large design space (10e40 possible realizations) we develop a specialized genetic algorithm and utilize it in conjunction with the reduced Bloch mode expansion method for fast band structure calculations. Focusing on high symmetry plain-strain square lattices, we report unit cell designs exhibiting record values of normalized band-gap size for all three categories. For the combined polarizations case, we reveal a design with a normalized band-gap size exceeding 60%.Comment: 4 pages, 1 figure, submitted for journal publicatio

    Retrieving the time-dependent thermal conductivity of an orthotropic rectangular conductor

    Get PDF
    The aim of this paper is to determine the thermal properties of an orthotropic planar structure characterised by the thermal conductivity tensor in the coordinate system of the main directions (Oxy) being diagonal. In particular, we consider retrieving the timedependent thermal conductivity components of the an orthotropic rectangular conductor from nonlocal overspecified heat flux conditions. Since only boundary measurements are considered, this inverse formulation belongs to the desirable approach of non-destructive testing of materials. The unique solvability of this inverse coefficient problem is proved based on the Schauder fixed point theorem and the theory of Volterra integral equations of the second kind. Furthermore, the numerical reconstruction based on a nonlinear least-squares minimization is performed using the MATLAB optimization toolbox routine lsqnonlin. Numerical results are presented and discussed in order to illustrate the performance of the inversion for orthotropic parameter identification

    Conductance peaks in open quantum dots

    Full text link
    We present a simple measure of the conductance fluctuations in open ballistic chaotic quantum dots, extending the number of maxima method originally proposed for the statistical analysis of compound nuclear reactions. The average number of extreme points (maxima and minima) in the dimensionless conductance, TT, as a function of an arbitrary external parameter ZZ, is directly related to the autocorrelation function of T(Z)T(Z). The parameter ZZ can be associated to an applied gate voltage causing shape deformation in quantum dot, an external magnetic field, the Fermi energy, etc.. The average density of maxima is found to be =αZ/Zc = \alpha_{Z}/Z_c, where αZ\alpha_{Z} is a universal constant and ZcZ_c is the conductance autocorrelation length, which is system specific. The analysis of does not require large statistic samples, providing a quite amenable way to access information about parametric correlations, such as ZcZ_c.Comment: 5 pages, 5 figures, accepted to be published - Physical Review Letter
    corecore