5,262 research outputs found

    Blockchain and other innovations in entrepreneurial finance: implications for future policy

    Get PDF
    More than a decade after the Global Financial Crisis (GFC) of 2007–08, entrepreneurial finance has exhibited enormous changes, notably in the rise of alternative nonbank financing. This has been most acutely experienced in the provision and delivery of early stage and innovative business finance—the focus of this special issue. The ensuing innovations in entrepreneurial finance have taken place in developed and developing economies, presenting considerable challenges to policymakers. This editorial paper reviews the special issue articles on this subject and their implications for future research, practice and policy

    Hydrogen peroxide production in a pilot-scale microbial electrolysis cell

    Get PDF
    The final publication is available at Elsevier via https://dx.doi.org/10.1016/j.btre.2018.e00276 © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/A pilot-scale dual-chamber microbial electrolysis cell (MEC) equipped with a carbon gas-diffusion cathode was evaluated for H2O2 production using acetate medium as the electron donor. To assess the effect of cathodic pH on H2O2 yield, the MEC was tested with an anion exchange membrane (AEM) and a cation exchange membrane (CEM), respectively. The maximum current density reached 0.94–0.96 A/m2 in the MEC at applied voltage of 0.35–1.9 V, regardless of membranes. The highest H2O2 conversion efficiency was only 7.2 ± 0.09% for the CEM-MEC. This low conversion would be due to further H2O2 reduction to H2O on the cathode or H2O2 decomposition in bulk liquid. This low H2O2 conversion indicates that large-scale MECs are not ideal for production of concentrated H2O2 but could be useful for a sustainable in-situ oxidation process in wastewater treatment.Ontario Early Researcher Awar

    Editorial entrepreneurial finance for green innovative SMEs

    Get PDF
    The Autumn 2022 COP27 Conference of the Parties of the United Nations Framework Convention on Climate Change demonstrated that the need for a clear research and policy agenda to assist the financing of early stage Cleantech and green SMEs innovation and green practice adoption has never been greater. Green, cleantech innovators hold important keys to unlocking vital globally game changing technologies that can scale-up to mitigate climate change and humanity’s wider environmental damage to ensure planetary sustainability. The paper provides a contemporary overview of the financing issues facing green SME innovators and adopters by reviewing seven papers published in this IEEE Transactions on Engineering Management Special Issue on green entrepreneurial finance. The papers provide deep insights into SMEs’ external financing requirements, barriers to private finance and the shortcomings of public tax and financing policies. This editorial paper concludes with a series of key recommendations for researchers, SME finance practitioners and public policymakers which provide guidance for more holistic policies to deliver longer horizon patient capital investing and facilitate green innovation commercialization, scale-up and adoption for a sustainable plane

    Development of Food-Luring Baited Traps for Solenopsis invicta (Hymenoptera: Formicidae) Monitoring in the Field in Southern China

    Get PDF
    Solenopsis invicta Buren (Hymenoptera: Formicidae), a red imported fire ant that originated from South America, is a worldwide invasive pest. This study investigated the efficacy of the newly designed baited trap to detect red imported fire ants, Solenopsis invicta Buren, under field conditions in China. Among the five food lures tested for red imported fire ants, the ants preferred ham sausage and fish powder, followed by mixed powder (50% fish powder + 50% black soldier fly powder) and black soldier fly powder. These lures were compared to sugar water (control) to determine their efficacy in trapping red imported fire ants. Field data revealed that the ham sausage powder trap was more efficient than the fish powder trap based on its ability to trap more red imported fire ants under field conditions and ease of use. Thus, it was concluded that the baited traps are efficient for longterm red imported fire ants monitoring

    The impact of corporate social responsibility on firm reputation and organizational citizenship behavior: The mediation of organic organizational cultures

    Get PDF
    This study investigates the impact of corporate social responsibility (CSR) on firm reputation and organizational citizenship behavior, along with the mediating inclusion of organic organizational cultures (Clan and Adhocracy) in the medium and large enterprises of Pakistan. To do the path analysis and to investigate the mediating role of organic organization culture, Smart PLS was used. For data collection, the convenience sampling technique was used and responses from 360 questionnaires were the main data source. The results displayed that CSR has a significant and optimistic effect on a firm reputation and employees’ organizational citizenship behavior (OCB). Secondly, the outcomes showed a positive and full mediation effect of organic organizational cultures between CSR and firm reputation but a partial mediation effect of organic organizational cultures between CSR and employees OCB. Further, the results demonstrated a positive and significant influence of employees’ OCB on a firm reputation. The extensive analysis of all factors of the study was autonomously examined to identify the insights that verify how the inclusion of organic organizational cultures can boost the firm reputation and employees’ OCB. Theoretical implications and future research direction are discussed

    Electrochemical Insight into the Use of Microbial Fuel Cells for Bioelectricity Generation and Wastewater Treatment

    Get PDF
    Microbial fuel cell (MFC) technology is anticipated to be a practical alternative to the activated sludge technique for treating domestic and industrial effluents. The relevant literature mainly focuses on developing the systems and materials for maximum power output, whereas understanding the fundamental electrochemical characteristics is inadequate. This experimental study uses a double-chamber MFC having graphite electrodes and an anion-exchange membrane to investigate the electrochemical process limitations and the potential of bioelectricity generation and dairy effluent treatment. The results revealed an 81% reduction in the chemical oxygen demand (COD) in 10 days of cell operation, with an initial COD loading of 4520 mg/L. The third day recorded the highest open circuit voltage of 396 mV, and the maximum power density of 36.39 mW/m2 was achieved at a current density of 0.30 A/m2. The electrochemical impedance spectroscopy analysis disclosed that the activation polarization of the aerated cathode was the primary factor causing the cell’s resistance, followed by the ohmic and anodic activation overpotentials

    Improving the polypropylene-clay composite using carbon nanotubes as secondary filler

    Get PDF
    Problem statement: Current researches have shown that the thermoplastic-clay nanocomposites have failed to live up to the earlier predictions albeit they have found some niche area of applications. This research work therefore aimed at studying the effect of carbon nanotube as secondary filler on the mechanical properties of polypropylene-clay nanocomposite. Approach: Hybrid polypropylene-clay nanocomposite was prepared in the presence of Multiwall Carbon Nanotubes (MWCNTs) as secondary additives using melt intercalation process. The effect of Multiwall Carbon Nanotubes (MWCNTs) on the polypropylene/clay matrix was investigated in terms of dispersion using XRD, tensile test (ASTM D 638) and notched Izod impact test (ASTM D256). These were compared with the conventional polypropylene-clay nanocomposite. Results: The resulting composite shows about 42% increase in the modulus, 26.20% in the tensile strength and 13.30 Kj m-2 impact strength when compared with binary combination of PP/Clay nanocomposite. XRD patterns of PP/Clay and PP/Clay/MWCNT nanocomposites show different diffraction peaks which are indications of intercalation mixed with macromixing. Conclusion: This study showed that MWCNT can successfully address the common shortcomings peculiar to PP/Clay nanocomposite

    Experimental and theoretical insights to demonstrate the hydrogen evolution activity of layered platinum dichalcogenides electrocatalysts

    Get PDF
    Abstract Hydrogen is a highly efficient and clean renewable energy source and water splitting through electrocatalytic hydrogen evolution is a most promising approach for hydrogen generation. Layered transition metal dichalcogenides-based nano-structures have recently attracted significant interest as robust and durable catalysts for hydrogen evolution. We systematically investigated the platinum (Pt) based dichalcogenides (PtS2, PtSe2 and PtTe2) as highly energetic and robust hydrogen evolution electrocatalysts. PtTe2 catalyst unveiled the rapid hydrogen evolution process with the low overpotentials of 75 and 92 mV (vs. RHE) at a current density of 10 mA cm−2, and the small Tafel slopes of 64 and 59 mV/dec in acidic and alkaline medium, respectively. The fabricated PtTe2 electrocatalyst explored a better catalytic activity than PtS2 and PtSe2. The density functional theory estimations explored that the observed small Gibbs free energy for H-adsorption of PtTe2 was given the prominent role to achieve the superior electrocatalytic and excellent stability activity towards hydrogen evolution due to a smaller bandgap and the metallic nature. We believe that this work will offer a key path to use Pt based dichalcogenides for hydrogen evolution electrocatalysts

    Excess foundry sand characterization and experimental investigation in controlled low-strength material and hot-mixing asphalt

    Get PDF
    This report provides technical data regarding the reuse of excess foundry sand. The report addresses three topics: a statistically sound evaluation of the characterization of foundry sand, a laboratory investigation to qualify excess foundry sand as a major component in controlled low-strength material (CLSM), and the identification of the best methods for using foundry sand as a replacement for natural aggregates for construction purposes, specifically in asphalt paving materials. The survival analysis statistical technique was used to characterize foundry sand over a full spectrum of general chemical parameters, metallic elements, and organic compounds regarding bulk analysis and leachate characterization. Not limited to characterization and environmental impact, foundry sand was evaluated by factor analyses, which contributes to proper selection of factor and maximization of the reuse marketplace for foundry sand. Regarding the integration of foundry sand into CLSM, excavatable CLSM and structural CLSM containing different types of excess foundry sands were investigated through laboratory experiments. Foundry sand was approved to constitute a major component in CLSM. Regarding the integration of foundry sand into asphalt paving materials, the optimum asphalt content was determined for each mixture, as well as the bulk density, maximum density, asphalt absorption, and air voids at Nini, Ndes, and Nmax. It was found that foundry sands can be used as an aggregate in hot-mix asphalt production, but each sand should be evaluated individually. Foundry sands tend to lower the strength of mixtures and also may make them more susceptible to moisture damage. Finally, traditional anti-stripping additives may decrease the moisture sensitivity of a mixture containing foundry sand, but not to the level allowed by most highway agencies.Structural Engineerin
    corecore