168 research outputs found
Baseline study: nutritional status, food security and fish consumption among people living with HIV/AIDS in Zambia
Under the regional programme Fisheries and HIV/AIDS in Africa, the University of Zambia, in collaboration with the WorldFish Center, has undertaken a baseline survey of the nutritional status and fish consumption of people living with HIV/AIDS in Zambia. Factors examined include household composition, education level, livelihood strategies, household food security, asset ownership, common ailments, sources of medication, the reason why children died, consumption of fish and other animal source foods, and level of nutrition education.
Water vapor transmission of poly(ethylene oxide)-based segmented block copolymers
This article discusses the rate of water vapor transmission (WVT) through monolithic films of segmented block copolymers based on poly(ethylene oxide) (PEO) and monodisperse crystallisable tetra-amide segments. The polyether phase consisted of hydrophilic PEO or mixtures of PEO and hydrophobic poly(tetramethylene oxide) (PTMO) segments. The monodisperse tetra-amide segments (T6T6T) were based on terephthalate units (T) and hexamethylenediamine (6). By using monodisperse T6T6T segments the crystallinity in the copolymers was high (∼ 85%) and, therefore, the amount of noncrystallised T6T6T dissolved in the polyether phase was minimal. The WVT was determined by using the ASTM E96BW method, also known as the inverted cup method. By using this method, there is direct contact between the polymer film and the water in the cup. The WVT experiments were performed in a climate-controlled chamber at a temperature of 30°C and a relative humidity of 50%. A linear relation was found between the WVT and the reciprocal film thickness of polyether-T6T6T segmented block copolymers. The WVT of a 25-μm thick film of PTMO2000-based copolymers was 3.1 kg m−2 d−1 and for PEO2000-based copolymers 153 kg m−2 d−1. Of all the studied copolymers, the WVT was linear related to the volume fraction of water absorbed in the copolymer to the second power. The results were explained by the absorption-diffusion model
Hydrophilic segmented block copolymers based on poly(ethylene oxide) and monodisperse amide segments
Segmented block copolymers based on poly(ethylene oxide) (PEO) flexible segments and monodisperse crystallizable bisester tetra-amide segments were made via a polycondensation reaction. The molecular weight of the PEO segments varied from 600 to 4600 g/mol and a bisester tetra-amide segment (T6T6T) based on dimethyl terephthalate (T) and hexamethylenediamine (6) was used. The resulting copolymers were melt-processable and transparent. The crystallinity of the copolymers was investigated by differential scanning calorimetry (DSC) and Fourier Transform infrared (FTIR). The thermal properties were studied by DSC, temperature modulated synchrotron small angle X-ray scattering (SAXS), and dynamic mechanical analysis (DMA). The elastic properties were evaluated by compression set (CS) test. The crystallinity of the T6T6T segments in the copolymers was high (>84%) and the crystallization fast due to the use of monodisperse tetra-amide segments. DMA experiments showed that the materials had a low Tg, a broad and almost temperature independent rubbery plateau and a sharp flow temperature. With increasing PEO length both the PEO melting temperature and the PEO crystallinity increased. When the PEO segment length was longer than 2000 g/mol the PEO melting temperature was above room temperature and this resulted in a higher modulus and in higher compression set values at room temperature. The properties of PEO-T6T6T copolymers were compared with similar poly(propylene oxide) and poly(tetramethylene oxide) copolymer
Nucleic-acid recognition interfaces: How the greater ability of RNA duplexes to bend towards the surface influences electrochemical sensor performance
The influence of RNA versus DNA on the performance of electrochemical biosensors where redox-labelled nucleic acid duplexes bend towards the electrode surface has been assessed. Faster electron transfer was observed for duplexes containing RNA, suggesting duplexes with RNA are more flexible. These data are of particular importance for microRNA biosensors
Angular redistribution of near-infrared emission from quantum dots in 3D photonic crystals
We study the angle-resolved spontaneous emission of near-infrared light
sources in 3D photonic crystals over a wavelength range from 1200 to 1550 nm.
To this end PbSe quantum dots are used as light sources inside titania inverse
opal photonic crystals. Strong deviations from the Lambertian emission profile
are observed. An attenuation of 60 % is observed in the angle dependent radiant
flux emitted from the samples due to photonic stop bands. At angles that
correspond to the edges of the stop band the emitted flux is increased by up to
34 %. This increase is explained by the redistribution of Bragg-diffracted
light over the available escape angles. The results are quantitatively
explained by an expanded escape-function model. This model is based on
diffusion theory and adapted to photonic crystals using band structure
calculations. Our results are the first angular redistributions and escape
functions measured at near-infrared, including telecom, wavelengths. In
addition, this is the first time for this model to be applied to describe
emission from samples that are optically thick for the excitation light and
relatively thin for the photoluminesence light.Comment: 24 pages, 8 figures (current format = single column, double spaced
Fruit ripening in Vitis vinifera: spatiotemporal relationships among turgor, sugar accumulation, and anthocyanin biosynthesis
This study reports the first observations indicating the spatiotemporal relationships among genetic and physiological aspects of ripening in the berry of Vitis vinifera. At the onset of ripening in the red flesh variety Alicante Bouschet, colour development began in the flesh at the stylar end of the fruit and progressed toward the pedicel end flesh and into the skin. Tissue solute potential and cell turgor also decreased first in the flesh. The decrease in flesh solute potential was due to accumulation of sugars, glucose and fructose, an accumulation that is integral to ripening. Expression of the anthocyanin biosynthesis-related genes VvMybA and VvUFGT was linearly related to the decrease in solute potential. Expression of VvMybA, and to a lesser extent VvUFGT, was correspondingly low in green tissue, higher in the red, stylar end flesh of berries beginning to ripen, and greatest in red berries. In contrast, expression of the abscisic acid biosynthesis-related genes VvNCED1 and VvNCED2 was not correlated with the other spatiotemporal aspects of the onset of ripening. These results, together with earlier work showing that sugar accumulation and acid loss also begin in the stylar flesh in other varieties, indicate that ripening in the grape berry originates in the stylar end flesh
A Modified RMCE-Compatible Rosa26 Locus for the Expression of Transgenes from Exogenous Promoters
Generation of gain-of-function transgenic mice by targeting the Rosa26 locus has been established as an alternative to classical transgenic mice produced by pronuclear microinjection. However, targeting transgenes to the endogenous Rosa26 promoter results in moderate ubiquitous expression and is not suitable for high expression levels. Therefore, we now generated a modified Rosa26 (modRosa26) locus that combines efficient targeted transgenesis using recombinase-mediated cassette exchange (RMCE) by Flipase (Flp-RMCE) or Cre recombinase (Cre-RMCE) with transgene expression from exogenous promoters. We silenced the endogenous Rosa26 promoter and characterized several ubiquitous (pCAG, EF1α and CMV) and tissue-specific (VeCad, αSMA) promoters in the modRosa26 locus in vivo. We demonstrate that the ubiquitous pCAG promoter in the modRosa26 locus now offers high transgene expression. While tissue-specific promoters were all active in their cognate tissues they additionally led to rare ectopic expression. To achieve high expression levels in a tissue-specific manner, we therefore combined Flp-RMCE for rapid ES cell targeting, the pCAG promoter for high transgene levels and Cre/LoxP conditional transgene activation using well-characterized Cre lines. Using this approach we generated a Cre/LoxP-inducible reporter mouse line with high EGFP expression levels that enables cell tracing in live cells. A second reporter line expressing luciferase permits efficient monitoring of Cre activity in live animals. Thus, targeting the modRosa26 locus by RMCE minimizes the effort required to target ES cells and generates a tool for the use exogenous promoters in combination with single-copy transgenes for predictable expression in mice
Feasibility studies for the measurement of time-like proton electromagnetic form factors from p¯ p→ μ+μ- at P ¯ ANDA at FAIR
This paper reports on Monte Carlo simulation results for future measurements of the moduli of time-like proton electromagnetic form factors, | GE| and | GM| , using the p¯ p→ μ+μ- reaction at P ¯ ANDA (FAIR). The electromagnetic form factors are fundamental quantities parameterizing the electric and magnetic structure of hadrons. This work estimates the statistical and total accuracy with which the form factors can be measured at P ¯ ANDA , using an analysis of simulated data within the PandaRoot software framework. The most crucial background channel is p¯ p→ π+π-, due to the very similar behavior of muons and pions in the detector. The suppression factors are evaluated for this and all other relevant background channels at different values of antiproton beam momentum. The signal/background separation is based on a multivariate analysis, using the Boosted Decision Trees method. An expected background subtraction is included in this study, based on realistic angular distributions of the background contribution. Systematic uncertainties are considered and the relative total uncertainties of the form factor measurements are presented
- …