8,040 research outputs found
Investigation of vertical cavity surface emitting laser dynamics for neuromorphic photonic systems
We report an approach based upon vertical cavity surface emitting lasers (VCSELs) to reproduce optically different behaviors exhibited by biological neurons but on a much faster timescale. The technique proposed is based on the polarization switching and nonlinear dynamics induced in a single VCSEL under polarized optical injection. The particular attributes of VCSELs and the simple experimental configuration used in this work offer prospects of fast, reconfigurable processing elements with excellent fan-out and scaling potentials for use in future computational paradigms and artificial neural networks. © 2012 American Institute of Physics
From Gatekeeping to Engagement: A Multicontextual, Mixed Method Study of Student Academic Engagement in Introductory STEM Courses.
The lack of academic engagement in introductory science courses is considered by some to be a primary reason why students switch out of science majors. This study employed a sequential, explanatory mixed methods approach to provide a richer understanding of the relationship between student engagement and introductory science instruction. Quantitative survey data were drawn from 2,873 students within 73 introductory science, technology, engineering, and mathematics (STEM) courses across 15 colleges and universities, and qualitative data were collected from 41 student focus groups at eight of these institutions. The findings indicate that students tended to be more engaged in courses where the instructor consistently signaled an openness to student questions and recognizes her/his role in helping students succeed. Likewise, students who reported feeling comfortable asking questions in class, seeking out tutoring, attending supplemental instruction sessions, and collaborating with other students in the course were also more likely to be engaged. Instructional implications for improving students' levels of academic engagement are discussed
Electron Microprobe Chemical Dating of Uraninite as a Reconnaissance Tool for Leucogranite Geochronology
We suggest that electron microprobe techniques may be employed to date Tertiary samples of uraninite (UO~2~), which can contain very high concentrations of radiogenic Pb after only a few million of years of U and Th decay. Although uraninite is regarded as a rare accessory mineral, it is relatively abundant in leucogranitic rocks such as those found in the Himalayan orogen. We apply the U-Th-total Pb electron microprobe chemical dating method to a uraninite crystal from a ca. 18.3 Ma dike of the Mugu granite from the Upper Mustang region of central Nepal. With this technique, we calculate a mean chemical date that is consistent with isotope-dilution thermal ionization mass spectrometry (ID-TIMS) U-Pb dates obtained from seven other uraninite grains and a monazite crystal from the same sample. Electron microprobe chemical dating yields results that typically will be an order of magnitude less precise than conventional dates: in the specific case of the Mugu granite, single point chemical dates each have ca. 1.5 Ma 2[sigma] (95%) confidence level uncertainties. However, the mean chemical date of 15 point analyses of the crystal we study has a 2SE (2 standard error) uncertainty of ca. 400 ka, comparable to uncertainties obtained with ID-TIMS. These results show that electron microprobe chemical dating of uraninite has substantial promise as a reconnaissance tool for the geochronology of young granitic rocks. The electron microprobe work also reveals substantial chemical complexity within uraninite that must be taken into account. The analyzed crystal displays a texturally and chemically distinctive core and rim that suggests episodic growth. Concentration gradients in U, Th, and Y across the boundary imply diffusive modification. We estimate the diffusivity of U, Th, and Y in uraninite at ca. 700 °C to be > 10-7 cm2 s-1. In contrast, Pb shows no distinctive concentration gradient across the core-rim boundary, implying that Pb has a much higher diffusivity in uraninite than U, Th, or Y. We estimate that Pb loss of as much as ca. 8.9% has occurred in the uraninite grains we analyzed by ID-TIMS
Reentrant Behavior of the Spinodal Curve in a Nonequilibrium Ferromagnet
The metastable behavior of a kinetic Ising--like ferromagnetic model system
in which a generic type of microscopic disorder induces nonequilibrium steady
states is studied by computer simulation and a mean--field approach. We pay
attention, in particular, to the spinodal curve or intrinsic coercive field
that separates the metastable region from the unstable one. We find that, under
strong nonequilibrium conditions, this exhibits reentrant behavior as a
function of temperature. That is, metastability does not happen in this regime
for both low and high temperatures, but instead emerges for intermediate
temperature, as a consequence of the non-linear interplay between thermal and
nonequilibrium fluctuations. We argue that this behavior, which is in contrast
with equilibrium phenomenology and could occur in actual impure specimens,
might be related to the presence of an effective multiplicative noise in the
system.Comment: 7 pages, 4 figures; Final version to appear in Phys. Rev. E; Section
V has been revise
Bistability patterns and nonlinear switching with very high contrast ratio in a 1550 nm quantum dash semiconductor laser
We report on the experimental observation of optical bistability (OB) and nonlinear switching (NS) in a nanostructure laser; specifically a 1550 nm quantum dash Fabry-Perot laser subject to external optical injection and operated in reflection. Different shapes of optical bistability and nonlinear switching, anticlockwise and clockwise, with very high on-off contrast ratio (up to 180:1) between output states were experimentally measured. These results added to the potential of nanostructure lasers for enhanced performance offer promise for use in fast all-optical signal processing applications in optical networks. © 2012 American Institute of Physics
Stability of the nonlinear dynamics of an optically injected VCSEL
Automated protocols have been developed to characterize time series data in terms of stability. These techniques are applied to the output power time series of an optically injected vertical cavity surface emitting laser (VCSEL) subject to varying injection strength and optical frequency detuning between master and slave lasers. Dynamic maps, generated from high resolution, computer controlled experiments, identify regions of dynamic instability in the parameter space. © 2012 Optical Society of America
Experimental Study of Nonlinear Dynamics and Chaos in a 1550 nm-VCSEL Subject to Polarized Optical Injection
We report the experimental observation of nonlinear dynamics including chaos in a1550nm-VCSEL subject to parallel- and orthogonally-polarized optical injection
La metodología de la investigación en Traductología
Empirical research methods in Translation Studies have been used in Spain for a decade. A glimpse of the most recent studies carried out in our country is given, as well as the actual trends in research. A research methodology based on the scientific method is proposed, and a research design to study the acquisition of translation competence in trainees is presented, including three original measuring instruments created for the study: the first instrument measures the translation notions of the students; the second one measures students' performance when faced with translation problems; and the third one measures performance regarding translation errors
- …