57 research outputs found

    Evidence for Misalignment Between Debris Disks and Their Host Stars

    Full text link
    We place lower limits on the obliquities between debris disks and their host stars for 31 systems by comparing their disk and stellar inclinations. While previous studies did not find evidence for misalignment, we identify 6 systems with minimum obliquities falling between ~30{\deg}-60{\deg}, indicating that debris disks can be significantly misaligned with their stars. These high-obliquity systems span a wide range of stellar parameters with spectral types K through A. Previous works have argued that stars with masses below 1.2 MM_\odot (spectral types of ~F6) have magnetic fields strong enough to realign their rotation axes with the surrounding disk via magnetic warping; given that we observe high obliquities for relatively low-mass stars, magnetic warping alone is likely not responsible for the observed misalignment. Yet, chaotic accretion is expected to result in misalignments of ~20{\deg} at most and cannot explain the larger obliquities found in this work. While it remains unclear how primordial misalignment might occur and what role it plays in determining the spin-orbit alignment of planets, future work expanding this sample is critical towards understanding the mechanisms that shape these high-obliquity systems.Comment: Accepted to The Astrophysical Journal (ApJ

    The Hawaii Infrared Parallax Program. VI. The Fundamental Properties of 1000+ Ultracool Dwarfs and Planetary-mass Objects Using Optical to Mid-IR SEDs and Comparison to BT-Settl and ATMO 2020 Model Atmospheres

    Full text link
    We derive the bolometric luminosities (LbolL_{\mathrm{bol}}) of 865 field-age and 189 young ultracool dwarfs (spectral types M6-T9, including 40 new discoveries presented here) by directly integrating flux-calibrated optical to mid-IR spectral energy distributions (SEDs). The SEDs consist of low-resolution (RR\sim 150) near-IR (0.8-2.5 μ\mum) spectra (including new spectra for 97 objects), optical photometry from the Pan-STARRS1 survey, and mid-IR photometry from the CatWISE2020 survey and Spitzer/IRAC. Our LbolL_{\mathrm{bol}} calculations benefit from recent advances in parallaxes from Gaia, Spitzer, and UKIRT, as well as new parallaxes for 19 objects from CFHT and Pan-STARRS1 presented here. Coupling our LbolL_{\mathrm{bol}} measurements with a new uniform age analysis for all objects, we estimate substellar masses, radii, surface gravities, and effective temperatures (TeffT_{\mathrm{eff}}) using evolutionary models. We construct empirical relationships for LbolL_{\mathrm{bol}} and TeffT_{\mathrm{eff}} as functions of spectral type and absolute magnitude, determine bolometric corrections in optical and infrared bandpasses, and study the correlation between evolutionary model-derived surface gravities and near-IR gravity classes. Our sample enables a detailed characterization of BT-Settl and ATMO 2020 atmospheric model systematics as a function of spectral type and position in the near-IR color-magnitude diagram. We find the greatest discrepancies between atmospheric and evolutionary model-derived TeffT_{\mathrm{eff}} (up to 800 K) and radii (up to 2.0 RJupR_{\mathrm{Jup}}) at the M/L transition boundary. With 1054 objects, this work constitutes the largest sample to date of ultracool dwarfs with determinations of their fundamental parameters.Comment: Resubmitted to The Astrophysical Journal (ApJ) after a positive referee report. 51 pages, 29 figures, 7 tables. Data presented in this work: https://doi.org/10.5281/zenodo.8315643. Scripts associated with methods: https://github.com/cosmicoder/HIPPVI-Cod

    The 1.6 micron near infrared nuclei of 3C radio galaxies: Jets, thermal emission or scattered light?

    Full text link
    Using HST NICMOS 2 observations we have measured 1.6-micron near infrared nuclear luminosities of 100 3CR radio galaxies with z<0.3, by modeling and subtracting the extended emission from the host galaxy. We performed a multi-wavelength statistical analysis (including optical and radio data) of the properties of the nuclei following classification of the objects into FRI and FRII, and LIG (low-ionization galaxies), HIG (high-ionization galaxies) and BLO (broad-lined objects) using the radio morphology and optical spectra, respectively. The correlations among near infrared, optical, and radio nuclear luminosity support the idea that the near infrared nuclear emission of FRIs has a non-thermal origin. Despite the difference in radio morphology, the multi-wavelength properties of FRII LIG nuclei are statistically indistinguishable from those of FRIs, an indication of a common structure of the central engine. All BLOs show an unresolved near infrared nucleus and a large near infrared excess with respect to FRII LIGs and FRIs of equal radio core luminosity. This requires the presence of an additional (and dominant) component other than the non-thermal light. Considering the shape of their spectral energy distribution, we ascribe the origin of their near infrared light to hot circumnuclear dust. A near infrared excess is also found in HIGs, but their nuclei are substantially fainter than those of BLO. This result indicates that substantial obscuration along the line-of-sight to the nuclei is still present at 1.6 micron. Nonetheless, HIGs nuclei cannot simply be explained in terms of dust obscuration: a significant contribution from light reflected in a circumnuclear scattering region is needed to account for their multiwavelength properties.Comment: 20 pages, 16 figures. Accepted for publication on Ap

    Search For Trapped Antihydrogen

    Get PDF
    We present the results of an experiment to search for trapped antihydrogen atoms with the ALPHA antihydrogen trap at the CERN Antiproton Decelerator. Sensitive diagnostics of the temperatures, sizes, and densities of the trapped antiproton and positron plasmas have been developed, which in turn permitted development of techniques to precisely and reproducibly control the initial experimental parameters. The use of a position-sensitive annihilation vertex detector, together with the capability of controllably quenching the superconducting magnetic minimum trap, enabled us to carry out a high-sensitivity and low-background search for trapped synthesised antihydrogen atoms. We aim to identify the annihilations of antihydrogen atoms held for at least 130 ms in the trap before being released over ~30 ms. After a three-week experimental run in 2009 involving mixing of 10^7 antiprotons with 1.3 10^9 positrons to produce 6 10^5 antihydrogen atoms, we have identified six antiproton annihilation events that are consistent with the release of trapped antihydrogen. The cosmic ray background, estimated to contribute 0.14 counts, is incompatible with this observation at a significance of 5.6 sigma. Extensive simulations predict that an alternative source of annihilations, the escape of mirror-trapped antiprotons, is highly unlikely, though this possibility has not yet been ruled out experimentally.Comment: 12 pages, 7 figure

    Genetic and population studies of quantitative levels of adenosine triphosphate in human erythrocytes

    Full text link
    The mean content of ATP in red cells of American Negroes is significantly less than the mean level in American Caucasians. This is compatible with the hypothesis that the quantitative level of ATP in red cells may be involved in selective processes related to falciparum malaria. There is no evidence of a sex effect on levels of ATP in either population. Family studies conducted in both populations indicate that the quantitative level of red cell ATP is at least partially inherited. Studies of a number of biochemical characteristics of red cells have been conducted in an effort to elucidate the mechanism of genetic and biochemical control of quantitative levels of erythrocytic ATP. These studies have been negative. Although other studies have demonstrated that thalassemia trait influences the level of red cell ATP, the presence of sickle cell trait or G-6-PD deficiency, the other two systems postulated to be involved in malaria protection, did not result in significant differences in mean red cell ATP content.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44114/1/10528_2004_Article_BF00487733.pd

    Methods for evaluating delivery systems for scaling-up malaria control intervention

    Get PDF
    BACKGROUND: Despite increased resources over the past few years the coverage of malaria control interventions is still inadequate to reach national and international targets and achieve the full potential of the interventions to improve population health. One of the reasons for this inadequate coverage of efficacious interventions is the limited understanding of the optimum delivery systems of the interventions in different contexts. Although there have been debates about how to deliver interventions, the methods for evaluating the effectiveness of different delivery systems have rarely been discussed. Delivery of interventions is relatively complex and a thorough evaluation would need to look holistically at multiple steps in the delivery process and at multiple factors influencing the process. A better understanding of the strength of the evidence on delivery system effectiveness is needed in order to optimise delivery of efficacious interventions. METHODS: A literature review was conducted of methods used to evaluate delivery systems for insecticide treated nets, intermittent preventive treatment in pregnant women, and treatment for malaria in children. RESULTS: The methodology of delivery system evaluations varied. There were inconsistencies between objectives and methods of the evaluations including inappropriate outcome measures and unnecessary controls. There were few examples where the delivery processes were adequately described, or measured. We propose a cross sectional observational study design with attribution of the outcomes to a specific delivery system as an appropriate method for evaluating delivery systems at scale. CONCLUSIONS: The proposed evaluation framework is adaptable to natural experiments at scale, and can be applied using data from routine surveys such as the Demographic and Health Surveys, modified by the addition of one to two questions for each intervention. This framework has the potential to enable wider application of rigorous evaluations and thereby improve the evidence base on which decisions about delivery systems for malaria control and other public health interventions are taken

    Evaluation of FluSight influenza forecasting in the 2021–22 and 2022–23 seasons with a new target laboratory-confirmed influenza hospitalizations

    Get PDF
    Accurate forecasts can enable more effective public health responses during seasonal influenza epidemics. For the 2021–22 and 2022–23 influenza seasons, 26 forecasting teams provided national and jurisdiction-specific probabilistic predictions of weekly confirmed influenza hospital admissions for one-to-four weeks ahead. Forecast skill is evaluated using the Weighted Interval Score (WIS), relative WIS, and coverage. Six out of 23 models outperform the baseline model across forecast weeks and locations in 2021–22 and 12 out of 18 models in 2022–23. Averaging across all forecast targets, the FluSight ensemble is the 2nd most accurate model measured by WIS in 2021–22 and the 5th most accurate in the 2022–23 season. Forecast skill and 95% coverage for the FluSight ensemble and most component models degrade over longer forecast horizons. In this work we demonstrate that while the FluSight ensemble was a robust predictor, even ensembles face challenges during periods of rapid change

    Expression Profiling of Major Histocompatibility and Natural Killer Complex Genes Reveals Candidates for Controlling Risk of Graft versus Host Disease

    Get PDF
    Background: The major histocompatibility complex (MHC) is the most important genomic region that contributes to the risk of graft versus host disease (GVHD) after haematopoietic stem cell transplantation. Matching of MHC class I and II genes is essential for the success of transplantation. However, the MHC contains additional genes that also contribute to the risk of developing acute GVHD. It is difficult to identify these genes by genetic association studies alone due to linkage disequilibrium in this region. Therefore, we aimed to identify MHC genes and other genes involved in the pathophysiology of GVHD by mRNA expression profiling. Methodology/Principal Findings: To reduce the complexity of the task, we used genetically well-defined rat inbred strains and a rat skin explant assay, an in-vitro-model of the graft versus host reaction (GVHR), to analyze the expression of MHC, natural killer complex (NKC), and other genes in cutaneous GVHR. We observed a statistically significant and strong up or down regulation of 11 MHC, 6 NKC, and 168 genes encoded in other genomic regions, i.e. 4.9%, 14.0%, and 2.6% of the tested genes respectively. The regulation of 7 selected MHC and 3 NKC genes was confirmed by quantitative real-time PCR and in independent skin explant assays. In addition, similar regulations of most of the selected genes were observed in GVHD-affected skin lesions of transplanted rats and in human skin explant assays. Conclusions/Significance: We identified rat and human MHC and NKC genes that are regulated during GVHR in skin explant assays and could therefore serve as biomarkers for GVHD. Several of the respective human genes, including HLA-DMB, C2, AIF1, SPR1, UBD, and OLR1, are polymorphic. These candidates may therefore contribute to the genetic risk of GVHD in patients
    corecore