221 research outputs found
Information dynamics: patterns of expectation and surprise in the perception of music
This is a postprint of an article submitted for consideration in Connection Science © 2009 [copyright Taylor & Francis]; Connection Science is available online at:http://www.tandfonline.com/openurl?genre=article&issn=0954-0091&volume=21&issue=2-3&spage=8
Variational Hilbert space truncation approach to quantum Heisenberg antiferromagnets on frustrated clusters
We study the spin- Heisenberg antiferromagnet on a series of
finite-size clusters with features inspired by the fullerenes. Frustration due
to the presence of pentagonal rings makes such structures challenging in the
context of quantum Monte-Carlo methods. We use an exact diagonalization
approach combined with a truncation method in which only the most important
basis states of the Hilbert space are retained. We describe an efficient
variational method for finding an optimal truncation of a given size which
minimizes the error in the ground state energy. Ground state energies and
spin-spin correlations are obtained for clusters with up to thirty-two sites
without the need to restrict the symmetry of the structures. The results are
compared to full-space calculations and to unfrustrated structures based on the
honeycomb lattice.Comment: 22 pages and 12 Postscript figure
Recommended from our members
Abnormal neural responses to harmonic syntactic structures in congenital amusia
Harmonic syntactic structures are organized hierarchically through local and long-distance dependencies. The present study investigated whether the processing of harmonic syntactic structures is impaired in congenital amusia, a neurodevelopmental disorder of pitch perception. Harmonic sequences containing two phrases were used as stimuli, in which the first phrase ended with a half cadence and the second with an authentic cadence. In Experiment 1, we manipulated the ending chord in the authentic cadence to be either syntactically regular or irregular. Sixteen amusics and 16 controls judged the expectedness of these chords while their EEG waveforms were recorded. In comparison to the regular endings, irregular endings elicited an ERAN, an N5 and a late positive component in controls but not in amusics, indicating that amusics were impaired in perceiving harmonic syntactic structures induced by local dependencies. In Experiment 2, we manipulated the half cadence of the harmonic sequences to examine the processing of harmonic syntactic structures induced by long-distance dependencies. An ERAN-like response and an N5 were elicited in controls but not in amusics, suggesting that amusics were impaired in processing long-distance syntactic dependencies. Furthermore, for controls, the neural processing of local and long-distance syntactic dependencies was correlated in the late (as indexed by the N5) but not in the early stage. These findings indicate that amusics are impaired in the detection of syntactic violations and subsequent harmonic integration. The implications of these findings in terms of hierarchical music-syntactic processing are discussed
Nucleation of a sodium droplet on C60
We investigate theoretically the progressive coating of C60 by several sodium
atoms. Density functional calculations using a nonlocal functional are
performed for NaC60 and Na2C60 in various configurations. These data are used
to construct an empirical atomistic model in order to treat larger sizes in a
statistical and dynamical context. Fluctuating charges are incorporated to
account for charge transfer between sodium and carbon atoms. By performing
systematic global optimization in the size range 1<=n<=30, we find that Na_nC60
is homogeneously coated at small sizes, and that a growing droplet is formed
above n=>8. The separate effects of single ionization and thermalization are
also considered, as well as the changes due to a strong external electric
field. The present results are discussed in the light of various experimental
data.Comment: 17 pages, 10 figure
Cognitive and affective judgements of syncopated musical themes
This study investigated cognitive and emotional effects of syncopation, a feature
of musical rhythm that produces expectancy violations in the listener by
emphasising weak temporal locations and de-emphasising strong locations in
metric structure. Stimuli consisting of pairs of unsyncopated and syncopated
musical phrases were rated by 35 musicians for perceived complexity, enjoyment,
happiness, arousal, and tension. Overall, syncopated patterns were more enjoyed,
and rated as happier, than unsyncopated patterns, while differences in perceived
tension were unreliable. Complexity and arousal ratings were asymmetric by
serial order, increasing when patterns moved from unsyncopated to syncopated,
but not significantly changing when order was reversed. These results suggest
that syncopation influences emotional valence (positively), and that while
syncopated rhythms are objectively more complex than unsyncopated rhythms, this
difference is more salient when complexity increases than when it decreases. It
is proposed that composers and improvisers may exploit this asymmetry in
perceived complexity by favoring formal structures that progress from
rhythmically simple to complex, as can be observed in the initial sections of
musical forms such as theme and variations
Active Learning for Auditory Hierarchy
Much audio content today is rendered as a static stereo mix: fundamentally a fixed single entity. Object-based audio envisages the delivery of sound content using a collection of individual sound ‘objects’ controlled by accompanying metadata. This offers potential for audio to be delivered in a dynamic manner providing enhanced audio for consumers. One example of such treatment is the concept of applying varying levels of data compression to sound objects thereby reducing the volume of data to be transmitted in limited bandwidth situations. This application motivates the ability to accurately classify objects in terms of their ‘hierarchy’. That is, whether or not an object is a foreground sound, which should be reproduced at full quality if possible, or a background sound, which can be heavily compressed without causing a deterioration in the listening experience. Lack of suitably labelled data is an acknowledged problem in the domain. Active Learning is a method that can greatly reduce the manual effort required to label a large corpus by identifying the most effective instances to train a model to high accuracy levels. This paper compares a number of Active Learning methods to investigate which is most effective in the context of a hierarchical labelling task on an audio dataset. Results show that the number of manual labels required can be reduced to 1.7% of the total dataset while still retaining high prediction accuracy
Structural Integration in Language and Music: Evidence for a Shared System.
In this study, we investigate whether language and music share cognitive resources for structural processing. We
report an experiment that used sung materials and manipulated linguistic complexity (subject-extracted relative
clauses, object-extracted relative clauses) and musical complexity (in-key critical note, out-of-key critical note,
auditory anomaly on the critical note involving a loudness increase). The auditory-anomaly manipulation was
included in order to test whether the difference between in-key and out-of-key conditions might be due to any salient,
unexpected acoustic event. The critical dependent measure involved comprehension accuracies to questions
about the propositional content of the sentences asked at the end of each trial. The results revealed an interaction
between linguistic and musical complexity such that the difference between the subject- and object-extracted relative
clause conditions was larger in the out-of-key condition than in the in-key and auditory-anomaly conditions.
These results provide evidence for an overlap in structural processing between language and music
Mapping Through Listening
Gesture-to-sound mapping is generally defined as the association between gestural and sound parameters. This article describes an approach that brings forward the perception-action loop as a fundamental design principle for gesture–sound mapping in digital music instrument. Our approach considers the processes of listening as the foundation – and the first step – in the design of action-sound relationships. In this design process, the relationship between action and sound is derived from actions that can be perceived in the sound. Building on previous works on listening modes and gestural descriptions we proposed to distinguish between three mapping strategies: instantaneous, temporal, and metaphoric. Our approach makes use of machine learning techniques for building prototypes, from digital music instruments to interactive installations. Four different examples of scenarios and prototypes are described and discussed
- …