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Active Learning for Auditory Hierarchy?

William Coleman1,2[0000−0002−7551−882X], Charlie Cullen1[0000−0002−8435−023X],
Ming Yan2, and Sarah Jane Delany1[0000−0002−2062−7439]

1 School of Computer Science, TU Dublin, Kevin Street, D08 X622.
d15126149@mytudublin.ie

2 Xperi Corporation, Bangor, UK, BT19 7QT

Abstract. Much audio content today is rendered as a static stereo mix:
fundamentally a fixed single entity. Object-based audio envisages the de-
livery of sound content using a collection of individual sound ‘objects’
controlled by accompanying metadata. This offers potential for audio
to be delivered in a dynamic manner providing enhanced audio for con-
sumers. One example of such treatment is the concept of applying varying
levels of data compression to sound objects thereby reducing the volume
of data to be transmitted in limited bandwidth situations. This applica-
tion motivates the ability to accurately classify objects in terms of their
‘hierarchy’. That is, whether or not an object is a foreground sound,
which should be reproduced at full quality if possible, or a background
sound, which can be heavily compressed without causing a deterioration
in the listening experience. Lack of suitably labelled data is an acknowl-
edged problem in the domain. Active Learning is a method that can
greatly reduce the manual effort required to label a large corpus by iden-
tifying the most effective instances to train a model to high accuracy
levels. This paper compares a number of Active Learning methods to in-
vestigate which is most effective in the context of a hierarchical labelling
task on an audio dataset. Results show that the number of manual labels
required can be reduced to 1.7% of the total dataset while still retaining
high prediction accuracy.

Keywords: active learning · auditory hierarchy · machine learning ·
support vector machine.

1 Introduction

Recent technological advances have driven changes in how media is consumed
in home, automotive and mobile contexts. Multi-channel audio home cinema
systems have become more prevalent. The consumption of broadcast and gaming
content on smart-phone and tablet technology via telecommunications networks
is also more common. This has created new possibilities and consequently poses
new challenges for audio content delivery such as how media can be optimized
for multiple contexts while minimizing file size.

? This work was supported by the Irish Research Council and DTS Licensing Ltd.
(now part of Xperi) under project code EBPPG/2016/339.
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Object-based audio [9] may offer a solution to this problem by providing
audio content at an object level with meta-data which controls how the media
is delivered dependant on mode of consumption. In this context, insight into the
relative importance of different sounds in the auditory scene will be useful in
forming content delivery strategies. In the following the concept of a hierarchy
between audio objects in multimedia content which changes over time due to
activity in the material, external factors and personal bias will be referred to as
audio object hierarchy.

How sounds are noted as being of most interest, referred to as Foreground
(FG) sounds in the following, is not explicitly understood. Section 2.1 outlines
a number of factors hypothesised to have an influence, such as attention [63],
prior training [5] and context [57]. It is reasonable to suggest that certain sounds
(speech, or alert noises, such as alarms) would likely be consistently categorised
as FG. However, detailed knowledge in this respect would be important in the
design of any delivery solution for an object-based audio system as every po-
tential influence can be thought of as requiring a weighting appropriate to the
degree to which each influences the hierarchy. Accurately mapping such weight-
ings requires a structured study in order to examine each influence in isolation,
where possible. In order to do so a dataset of sounds is required, isolated from
context in so far as this is possible, to examine the influence of external factors.
To our knowledge no such dataset suited to the study of auditory hierarchy cur-
rently exists and the lack of labelled datasets of suitable scale is an acknowledged
problem in the domain [46]. This paper outlines a method by which large num-
bers of audio objects can be labelled with minimal human input to high levels
of accuracy into FG and Background (BG) categories.

Previous work has outlined evidence of an inherent FG, Neutral (N), BG
hierarchy between isolated sounds [10]. Further studies have established that a
supervised Machine Learning (ML) approach to auditory hierarchy prediction
shows promise [11], in this instance by framing the problem as a binary ‘FG’ /
‘not FG’ categorisation task, albeit using a small dataset. State-of-the-art audio
ML requires large, labelled datasets [8] in order to achieve high accuracy levels.
Datasets are difficult and expensive to compile and label manually, a problem
which can be addressed using data augmentation techniques [49]. However, care
must be taken that such augmentations do not alter the underlying semantic
information of stimuli. It follows that other methods of minimising the manual
effort required to compile large datasets are worthy of investigation.

Active Learning (AL) is a supervised ML technique that can be used to
minimise the manual effort required to label large datasets [52]. AL strives to
identify & label the most informative instances in a dataset, aiming to use a
minimum of manual intervention to train a model capable of classifying unseen
instances to a high level of accuracy. In this paper, AL is used to apply hierar-
chical labels to an audio corpus of environmental sounds. A number of selection
strategies can be used in AL. Uncertainty Sampling AL (USAL) is a model-based
approach which uses an uncertainty measure to identify instances that are most
difficult to classify, assuming that these will be most informative for predicting
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other instances [52]. Exploration Guided AL (EGAL) [24] is a model-free ap-
proach which aims to identify dense clusters of instances that are most diverse
from already labelled examples. This operates on the assumption that focusing
on cluster centroids most distal from already labelled instances first will allow
accurate predictions to be made early in the labelling process.

While popular, USAL is computationally expensive and time consuming, re-
quiring models to be built repeatedly throughout the labelling process. EGAL
addresses this problem by basing selection of informative instances solely on
dataset features, avoiding the overhead of training models repeatedly. EGAL
has been found to be more effective than model-based methods in some applica-
tions [41] and to our knowledge has not yet been applied to an audio problem.
In addition, a random selection strategy is implemented as a baseline.

Results show that it is possible to dramatically reduce the number of labels
required to hierarchically label the audio dataset used in this study. EGAL
techniques outperform both USAL and random selection strategies, being able
to label to high accuracy using only 1.7% of labelled dataset instances. The next
best performing selection method requires 11.7% of labels to achieve the same
accuracy level.

The following sections offer an overview of perceptual (Section 2.1) and ML
(Section 2.2) research relevant to auditory hierarchy. Section 2.3 introduces AL
and outlines the USAL and EGAL selection methods employed in this study.
Section 3 offers an overview of methodology covering a subjective labelling ex-
ercise (Section 3.1), feature extraction methods (Section 3.2), classifier choice
(Section 3.3), a cross validation experiment investigating audio data representa-
tion options (Section 3.4) and the structure of the AL experiment implemented
in this instance (Section 3.5). Section 4 describes an experiment utilizing a num-
ber of AL selection methods and outlines the results observed from these efforts.
Finally, Section 5 discusses these findings and suggests future areas for study.

2 Related Work

2.1 Auditory Scene Analysis

Research in object-based broadcasting [9] and auditory object categorization [62]
has underlined a growing interest in how such concepts can be applied to modern
media consumption. The concept of a variable compression codec is but one such
possibility, addressed in this paper by outlining how a dataset can be formulated
on which a model can be trained to predict auditory hierarchy. Auditory Scene
Analysis (ASA) involves a constant activity of sound categorization which Breg-
man [7] outlines as both a conscious (schematic or top-down) and unconscious
(primitive or bottom-up) process of soundscape perception. Guastavino [18] has
noted converging evidence from both behavioral and neurophysiological domains
that provides support for the notion that amalgamation of these processes is
integrated, rather than serial. In the context of auditory hierarchy ASA can
therefore be considered as a constant analysis of the surrounding sound scene,
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subject to varying levels of influence from a number of external factors. These
have been noted to include physical properties of sounds [45], the level of at-
tention granted by listeners [63], volume level [44], proximity [31], sound event
context and listening mode [57], level of anticipation [26], prior training [5], ex-
perience [35] and even other senses (sight [17], smell [64] and touch [54]). This
process involves continual identification of interesting sounds which may then
be consciously analysed for semantic information or further meaning, or not, as
deemed necessary.

This is therefore not a trivial problem to approach, as any fully-featured
model predicting FG elements would be expected to incorporate input from
many, continually changing, factors, each requiring careful examination both to
evaluate the relative weight each carries with respect to auditory hierarchy and
to assess how they interact over time. Furthermore, the process is subjective,
each subject having a different perspective on which sounds are important and
which are not, either explicitly or implicitly. Considering this, the most effective
way to examine the effect of each factor is to first form a dataset with stimuli
isolated from external influence in so far as this is possible. This paper therefore
investigates audio object hierarchy prediction as it pertains to sounds isolated
from context in so far as this is practical. Future work will involve investigation
of other factors identified as having an influence on hierarchical categorization.

Predicting auditory hierarchy for modern media applications involves an in-
vestigation of individual subjective judgement of sound, specifically with re-
gard to which sounds are most important when. As such, this should be seen
as distinct from studies utilising ITU-R standards such as BS.1116-3 [28] and
BS.1534-3 (MuSHRA) [29] which focus on the minutiae of variations in Basic
Audio Quality (BAQ) [28] between experimental stimuli when evaluating output
from different loudspeakers [53] or the qualities of ambisonic microphones [4],
for instance. Our focus is on subjective perception of macro sound categorisa-
tion on a hierarchical level, rather than on micro differences between stimuli.
This study focusses on stimuli suitable for use in game audio, visual streaming
media and broadcasting content. This represents a broad palette of environ-
mental sounds deemed most appropriate in terms of the envisaged end use of a
hierarchical model. Framing the experimental and stimuli requirements in this
manner allows us to prioritise accumulating volume of labels via an online en-
vironment over maintaining strict laboratory assessment conditions as required
by the stricter standards.

2.2 Machine Learning for Auditory Hierarchy

There is a considerable extant audio ML literature [59] and a rich recent history
in the application of such knowledge to the areas of acoustic scene classifica-
tion [21], music information retrieval [60], various so-called ‘hearable’ technolo-
gies such as Google Home [16] and Amazon Echo [1] and many others [36, 61,
34]. In particular, Deep Learning (DL) algorithms such as Convolutional Neu-
ral Networks and Recurrent Neural Networks have gained a reputation as being
good predictors for a wide variety of tasks and are considered state-of-the-art [8]
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in many audio domains such as speech recognition [23] and environmental sound
categorization [48]. However, while these algorithms are capable of high accu-
racy they also require large amounts of data in order to achieve such scores [51].
Indeed, the lack of large, labelled datasets for experimental purposes is an ac-
knowledged problem in the field [3, 46].

It follows that securing a sufficient volume of suitable auditory stimuli is of
primary importance in order to train a model that will accurately predict on
unseen instances. This can be addressed by crowd sourcing labels for auditory
stimuli and by using ML data augmentation techniques [46]. In the audio domain
these include temporal and pitch variations, random cropping, dynamic range
compression and the introduction of background noise [49]. However, it is still a
difficult task to scale to large datasets using these methods and each are subject
to limitations. Label quality is a concern with crowd sourced labels and care
must be taken that data augmentation techniques do not change the underlying
semantic content of the stimuli.

Auditory hierarchy has been investigated in a number of studies to date but
there are methodological differences that preclude the use of these datasets for
this study. For example, Lewis et al. [32] examine subject rating of approximately
256 sounds on an ‘object like’ versus ‘scene like’ axis for a selection of mechanical
and environmental sounds. Thorogood et al. [55] use 200 soundscape recordings
of 4 seconds in length derived from the World Soundscape Project Tape Library
database [58] and categorize them in BG, FG and ‘FG with BG’ categories.
These datasets are not of a suitable scale for our purposes, however. Salamon et
al. [50] apply subjective labelling to 8,732 BG and FG urban sounds and validate
label accuracy with experimental testing, but the sounds used are confined to
urban settings and are not isolated from context. The authors are unaware of
any large, publicly available database of sounds with hierarchical labels suitable
for a study of multiple influences on auditory hierarchy.

A number of environmental sound databases are publicly accessible for re-
search purposes (a useful summary is available [22]) and from these the Dataset
for Environmental Sound Classification (ESC) [43] has been selected as it pro-
vides a large number of potential stimuli (> 250,000 in total) which can be
parsed for instances that contain isolated sounds suitable for hierarchical la-
belling. Further details on the stimuli selected for this experiment are given in
Section 3.1.

2.3 Active Learning

AL is a supervised ML technique originally designed to build classifiers with
minimal manual labelling effort which can be used to label large datasets [52].
As outlined in Figure 1, when a prediction model cannot confidently predict
class membership the informativeness of those instances can be assessed using a
selection technique. Those deemed most informative are presented to a human
oracle for labelling and used to improve the prediction model. The AL process
is applied iteratively and more instances are presented for labelling until the
performance of a model trained on labelled instances reaches a predetermined
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Fig. 1. An outline of the Active Learning process. The confidence of a prediction model
(USAL) is one method of selecting instances for labelling. A feature space exploration
technique (EGAL) will also be explored.

level or there are no more instances to label. The objective is to use minimal
manual effort to label the entire dataset to a high level of accuracy.

Two selection strategies are investigated in the following. The first of these
is the most commonly used method, USAL, a model-based approach which uses
uncertainty in model prediction as a metric to select instances for labelling. It
has used in a variety of audio applications including environmental sound classi-
fication [20], bird sound categorization [47] and speech emotion recognition [65].
The hypothesis behind USAL holds that the instances about which the classifier
is most confident will provide the least useful information and that the instances
most difficult to categorize will be more informative, allowing greater accuracy
from fewer manually applied labels. It therefore selects these instances for la-
belling first. Uncertainty can be identified in different ways. The least confident
method ranks classification confidence based on the best prediction and takes
the lowest ranking instance for labelling. An entropy measure can also be used
to assess the average information content of an instance. The margin method is
employed in this case, which ranks instances by their proximity to a classifier
decision boundary, presenting those closest for labelling as they are the instances
most difficult to categorize. This model-based approach is computationally ex-
pensive as it requires a model to be built at each iteration which can be time
consuming and may not be practical for some applications.

The EGAL selection strategy addresses this shortcoming by eschewing use
of a model and identifying useful instances for classification purposes in rela-
tion to their location in the feature space relative to neighbouring instances and
proximity to already labelled instances. This can be expected to reduce the com-
putational overhead and time required to label a corpus of instances compared
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to a model-based technique such as USAL as there is no need to retrain a model
for each iteration. EGAL has been used in text classification applications [24]
but to our knowledge this is the first application of this technique to an audio
problem. The algorithm seeks to identify instances in clusters that are furthest
from labelled instances on the assumption that dense clusters which are diverse
from labelled instances will be most informative for classification purposes. This
is implemented by first calculating a density value per instance, defined as the
sum of similarities between the instance and all other instances within a certain
radius. Here, the inverse of Euclidean distance is used for this measure. Secondly,
a diversity value is calculated by measuring the distance between labelled and
unlabelled instances.

3 Methodology

Audio stimuli and label collection methods used in a subjective labelling exer-
cise are described in Section 3.1. Feature extraction and data preparation are
covered in Section 3.2 and classifier choice is outlined in Section 3.3. A cross
validation experiment investigating feature representations and classifiers is out-
lined in Section 3.4. The Python language was used for implementation using
the associated Scikit-learn [42], SciPy [30] and Pandas [38] libraries.

3.1 Dataset

The ESC datasets [43] have been compiled from the Freesound website (freesound.org)
for use in computational audio scene analysis contexts for training and testing
automatic classification of sounds. They have been selected in this instance as
they provide a large bank (>250,000) of potential stimuli with associated sound
class metadata. Dataset recordings are of approximately 5 seconds duration and
are provided in stereo at a sample rate of 44.1kHz. In excess of 20,000 sounds
were reviewed by the authors for suitability of use in this study with care taken
to exclude sounds which evinced more than one sound event in order to provide a
corpus of stimuli isolated from context in so far as this is possible. This resulted
in the selection of 10,166 sounds as suitable for inclusion as they did not evince
more than one audio ‘object’.

A random selection of these sounds were used in a subjective labelling ex-
ercise carried out by participants from Xperi/DTS Inc. and from researchers in
the School of Media, Technological University Dublin. The labelling environment
was deployed using a website because this facilitates access for a physically dis-
tributed cohort of participants. As discussed in Section 2.1 auditory hierarchy
categorisation concerns perception on a macro rather than a micro level so par-
ticipants were asked to label sounds using headphones in a quiet environment
accepting a variance in acoustic rendering in favor of maximising participant
numbers. Presentation order was randomised using random orders were sourced
from random.org, a source for true random sequences cited in a number of peer-
reviewed publications [19] in order to ensure there was no imbalance in sound
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class representation for each labelling session. In all, 3,002 sounds were labelled a
minimum of 3 times on a FG, Neutral, BG scale by 149 participants (73% male,
7% 18-24, 49% 25-44). An average of 83.42 sounds were rated per participant
with each given the opportunity to rate 100 stimuli. The average time taken
to complete the rating process excluding outliers > 1 hour in duration was 19
minutes 54 seconds. The numerical coding for each category (BG - 1, N - 2, FG -
3) was used to generate mean and standard deviation scores for each sound. For
illustrative purposes the sounds are organized into 12 broad classes as outlined
in Table 1 which reproduces the average rating score and standard deviation per
class.

Table 1. A summary of instance count, average score and standard deviation (σ) per
class for all 3,002 sounds rated. The highest occurrences are reproduced in bold, lowest
are underlined.

Class No. Average Score σ

Nature 523 1.655 0.578
Ambience 507 1.477 0.504
Animal 408 2.121 0.569
Urban 370 1.382 0.437
Machine 285 1.941 0.585
Human 266 2.131 0.461
Other 226 2.325 0.564
Domestic 145 2.307 0.527
Travel 115 1.285 0.356
Actions 67 2.269 0.573
Alarms 55 2.535 0.41
Bells 35 2.41 0.715

This table shows that sounds such as ‘Alarms’ are likely to be labelled as
FG. Sounds categorised as ‘Travel’ are most likely to be labelled BG reflecting
the interior public transport hum ambience present in many of these sounds.
Standard deviation per sound class varies between 0.41 and 0.715. The variance
in average rating is outlined in the boxplots reproduced in Figure 2 and this
gives an indication of the variance in the data which in this instance shows the
degree of subject consensus on BG - Neutral - FG sounds.

For illustrative purposes the sounds were organised into three average rating
score bands. There are 1,156 instances with an average rating of 1.5 or under,
designated BG sounds. There are 608 sounds with an average rating of > 2.5 and
these are designated FG sounds. The remaining 1,238 sounds have an average
rating > 1.5 & < 2.5 and are referred to as neutral sounds. The width of each
box plot is proportionate to the number of instances summarized in each rating
band.

Similar to other research [10] a greater consensus is noted among subjects
as regards sounds considered most FG or most BG; There is less variance in
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Fig. 2. Boxplots outlining the variance in average sound ratings grouped in broad
bands. Note that the minimum average score for BG sounds is 1, hence there is no
quartile or minimum whisker below this value. Similarly, the maximum average score
for FG sounds is 3, hence this band has no quartile or maximum whisker above this
value. Also, the width of each boxplot is proportional to the number of instances
summarised in each band.
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the ratings for these bands than those sounds considered Neutral. Interquartile
range for both FG and BG bands is approximately 0.33 of a rating score. Neutral
sounds on the other hand exhibit greater variance in rating scores compared to
BG and FG sounds, interquartile range here being twice that of BG and FG
sounds, 0.67 of a rating score. The high degree of variance for some sounds,
indicating a lack of consensus between subjects as to correct sound class, is to
be expected with a subjective labelling task and the dataset evinces disagree-
ment between raters as to the correct hierarchical category for many instances.
The proposed application of a variable compression codec suggests a priority of
identifying FG sounds so for the purposes of the following experiments it was
decided to address the data as a binary classification problem. Accordingly, all
sounds achieving an average score ≥ 2.5 (608 instances, 20.25%) are categorized
as ‘FG’. All others (2,394 instances, 79.7%) are categorized as ‘nonFG’ sounds.

3.2 Feature Extraction

The Python LibROSA [37] package was used to extract three different feature
vectors for each audio stimulus. Mel Frequency Cepstral Coeficients (MFCC) and
Log Power Mel Spectrogram (LPMS) representations were extracted based on
their popularity in audio machine learning applications [46] and a Chromagram
representation was also extracted based on its usefulness in previous experiments
by the authors [11]. All files were first downsampled to 16kHz to account for the
variable recording quality of sounds sourced from Freesound, such as the ESC
datasets. A Hann window of the form outlined in Equation 1, (where n = sample
number, M = the number of points in the output window) is used to extract
audio data.

w(n) = 0.5 − 0.5cos

(
2πn

M − 1

)
, 0 ≤ n ≤M − 1 (1)

In line with similar experiments [49, 14] a window size of 128 ms (2048 sam-
ples at 16 kHz) and stride of 32 ms was used to extract 12 frequency bands of
Chromagram, 13 bands of zero-order MFCC feature vectors and 40 bands of
LPMS features. A representation of 128 bands of LPMS data was also experi-
mented with but no performance improvement was observed although training
time increased markedly due to the greater volume of data involved. From these
zero-order, delta, double delta and fifth-order delta representations were ex-
tracted as delta features were prominent in previous experiments by the authors
investigating hierarchical categorization [11]. All data is scaled and bands from
each data matrix are flattened and organized into 12 data subsets, 4 each for the
MFCC, Chroma and LPMS data, a summary of which is presented in Table 2.

3.3 Classifier

A Support Vector Machine (SVM) classifier is used as it has been used exten-
sively on audio ML applications [55, 56, 6]. SVMs aim to find the optimal hy-
perplane which separates instances by maximising the margin of distance from
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Table 2. A summary of feature representation data vectors and their dimensions. For
each representation (MFCC, Chroma & LPMS) zero-order and 1st, 2nd and 5th order
delta vectors are computed, resulting in a total of 12 initial representations.

Type Dimensions Flattened Dimensions

MFCC 3002 x 13 x 156 3002 x 2,028
Chroma 3002 x 12 x 156 3002 x 1,872
LPMS 3002 x 40 x 156 3002 x 6,240

hyperplane to data point [12]. A number of different kernels can be used with a
SVM. Here, three are investigated: the Radial Basis Function (RBF), Polynomial
and Linear kernels.

3.4 Cross Validation Experiment

In a preliminary experiment optimal feature representation for distinguishing
between FG and nonFG sounds and which SVM kernel works best on this data
is investigated. A SVM with three different kernels (RBF, polynomial and lin-
ear) is applied using default parameters outlined in Table 3. Class weights are
adjusted to penalise mistakes inversely proportional to the number of instances
in each class to adjust for the class imbalance in the dataset. Results showed that
extracted delta representations give no improvement on zero-order representa-
tions and so these were discarded. Average Class Accuracy (ACA) and single
class accuracy scores per kernel and representation are provided in Table 4.

Table 3. Default parameters used per kernel in the initial classification exercise. The
‘scale’ value for the gamma parameter uses 1/(no.features ∗ variance) as value of
gamma.

Kernel Parameters

Radial Basis Function C=1, gamma=‘scale’
Linear C=1
Polynomial C=1, degree=3, gamma=‘scale’

In addition to MFCC, Chroma and LPMS zero-order representations one
further representation, a concatenation of these three, was investigated. This is
labelled the ‘All’ representation in Table 4. Marginally better performance was
observed using the ‘All’ representation at the cost of a significant increase in
time taken to run the analysis due to its larger size. The MFCC and LPMS rep-
resentations performed similarly to the ‘All’ representation, while the Chroma
representation was notably poorer. It was decided to proceed with the LPMS
representation as it performed slightly better than the MFCC and takes signifi-
cantly less time to train than the ‘All’ representation, while achieving scores only
slightly lower. With regard to kernel choice, RBF and polynomial kernels were
observed to perform more strongly than the linear kernel. The overall difference
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Table 4. Average Class Accuracy (ACA), and Class Accuracy scores for FG and nonFG
classes per kernel and feature representation. The ‘All’ representation is a concatenation
of the other 3 representations.

Kernel Measure MFCC Chroma LPMS All

RBF ACA 72.2% 65.7% 73.9% 74.3%
FG 67.3% 53.6% 67.1% 69.7%
nonFG 77.2% 77.8% 80.7% 78.9%

Linear ACA 63.9% 53.1% 63.1% 60.3%
FG 45.9% 31.9% 38.5% 35.9%
nonFG 81.9% 74.3% 87.8% 84.8%

Polynomial ACA 72.4% 63.0% 73.4% 74.4%
FG 66.6% 61.0% 69.1% 70.1%
nonFG 78.3% 65.0% 77.7% 78.7%

between RBF and polynomial was marginal so the RBF kernel was selected as
it is more commonly used [40].

Parameters were fitted for the RBF kernel to the LPMS representation using
a grid search and a separate validation set of 20% of the dataset within a 5-
fold cross validation. The ACA achieved was 76.9% which provides a point of
comparison with ACA scores achieved using minimal labelled instances during
AL labelling.

3.5 Active Learning Process

As 3,002 instances were pre-labelled as described in Section 3.1, a simulated la-
belling exercise was conducted to assess AL for auditory hierarchy, extracting a
stratified, randomly selected hold-out test set of 501 instances to measure per-
formance. The remaining 2,501 instances form the pool of ‘unlabelled’ examples.
Due to the random nature of the hold-out test set and ‘unlabelled’ pool three
random splits are formed in total to counteract the chance of a single iteration
providing a misleading result. The results reported are therefore averages over 3
iterations.

To select the first set of instances agglomerative clustering was employed on
the ‘unlabelled’ pool to form 5 distinct clusters and then select an initial batch
of 10 instances as this has been shown to be an effective way to initiate AL [25,
24]. During labelling runs Average Class Accuracy (ACA) was used to measure
performance due to the imbalanced class distribution. The initial instances are
labelled, a model was trained on them and an ACA score calculated on the
hold-out test set. The selection method was then used to pick the next batch of
10 instances from the ‘unlabelled’ pool, these were labelled, added to the other
labelled instances and a new accuracy score calculated on the hold-out test set.
This process continued until there were no more instances left to be ‘labelled’.
The ACA values were used to plot a learning curve which was then used to
compare methods both visually and with an Area Under the Learning Curve
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(AULC) value. As a baseline a random selection strategy was also implemented
which does not seek to intelligently select instances for labelling.

4 Results

An overview of USAL and EGAL selection methods has previously been offered
in Section 2.3. These methods are now applied to the selected representation to
identify which is most effective in terms of identifying the minimal number of
instances for manual labelling that allow a model to classify to high accuracy
levels. In total five selection methods are investigated:

– USAL, which uses a SVM to identify the instances closest to the classification
decision boundary.

– Diversity EGAL, which uses the diversity measure from EGAL to select
instances that are most diverse from already labelled instances.

– Density EGAL, which uses the density measure from EGAL to select cluster
centroids from the most densely populated areas of the feature space.

– Hybrid EGAL, which combines density and diversity EGAL measures to
select cluster centroids that are most diverse from already labelled instances.

– Random selection, selects instances randomly. 3 random selection runs are
executed to account for randomness.

Figure 3 shows results of labelling runs from 10 to eventually 2,501 ‘labelled’
instances. It includes a shaded area that denotes the maximum and minimum
values achieved by random selection for each batch which demonstrates large
variance.

The EGAL runs are noticeably strongest early in the training runs, all quickly
achieving scores in excess of 70% accuracy. USAL does not match this perfor-
mance and indeed is surprisingly, given the effectiveness of the method in other
domains [52], less effective than Random selection apart from the earliest section
of the run under 70 labels. There is considerable variance between the maximum
and minimum scores from the random selection method showing that this is not
a reliable method for selection in this application. Figure 4 focusses on the early
portion of the labelling run which tracks scores achieved between 0 - 500 labels.

This highlights the success of diversity EGAL, which achieves 74% ACA using
only 50 labels. The other EGAL variants are fractionally behind this early result,
but perform similarly up to approximately 120 labels with the performance of
density EGAL being notably strong beyond this point. The random selection
strategy does not improve on the accuracy level of diversity EGAL at 50 labels
until it is provided 350 labels. USAL requires 1,410 labels to achieve the same.
Table 5 offers a summary of ACA and AULC scores at different points from each
labelling run.

Given the ACA achieved on the whole dataset is 76.9% across 5 stratified
folds, the score of 74% from 50 labels is a strong result, meaning that AL in this
instance can achieve 96.1% of total possible model accuracy using only 1.7% of
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Fig. 3. Comparison of Active Learning selection methods displaying ACA scores (Bal-
anced Accuracy) achieved from 10 - 2,501 labels. Each line denotes the overall average
score for each method per batch. The shaded area denotes the variance observed from
the random selection method.
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Fig. 4. Comparison of selection methods for early stage (between 0 and 500 labels)
Active Learning runs. Each line denotes the overall average score for each method
per batch. The shaded area denotes the variance observed from the random selection
method.
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Table 5. A summary of model accuracy and AULC scores for points in the labelling
run per AL method. Using Diversity EGAL it is possible to achieve high classification
accuracy (74%) relative to the model maximum using minimal manual labelling (50
labels) on this dataset.

Method 50 100 200 500 2501
Average Class Accuracy Scores

Diversity EGAL 74.0% 72.5% 70.3% 70.2% 77.5%
Hybrid EGAL 72.7% 71.4% 70.5% 71.1% 77.5%
Density EGAL 70.7% 72.4% 73.8% 75.6% 77.5%
USAL 66.0% 65.2% 67.0% 70.1% 77.5%
Random 60.9% 67.8% 72.6% 75.4% 77.5%

AULC Scores

Diversity EGAL 20.4 57.1 128.9 338.4 1838.2
Hybrid EGAL 20.8 56.7 127.7 341.6 1845.2
Density EGAL 20.2 54.9 128.2 353.3 1900.8
USAL 17.8 50.4 117.5 323.1 1808.6
Random 17.2 48.6 117.9 340.4 1877.5

labels. As noted, using random selection 350 labels, or 11.7% of the total, is
required to improve on this accuracy level.

For statistical analysis the Friedman test was used to compare more than
two samples with the Wilcoxon signed-rank test used as a post-hoc test between
pairs of samples. In the case of the Wilcoxon test a Bonferroni correction was
applied to the significance level in order to reduce the Type I error rate (iden-
tifying a significant effect where there is none) [15]. This resulted in a revised
significance level of 0.005 for the post-hoc Wilcoxon tests as 10 comparisons were
made. Additionally for the Wilcoxon test runs which have 20 measurements are
compared as comparisons below this point are not recommended due to sample
size [30]. The Friedman and Wilcoxon are non-parametric tests that look for dif-
ferences between related samples and are noted to be a safer option than using
parametric tests as they do not assume normal distributions or homogeneity of
variance [13].

A Friedman test on the AL ACA values up to 200 labels provided is sig-
nificant at the 95% level (p = 8.03E-10). The Wilcoxon tests reveal that the
differences between EGAL variants are not significant to the revised significance
level. However, the differences between EGAL and USAL, and between EGAL
and Random selection methods are significant to the revised significance level.
This indicates that EGAL is superior to both USAL and Random selection at
selecting instances on which a classifier can be built to achieve high accuracy
levels with minimal labelling. These results also suggest that there is little differ-
ence between the EGAL variants in this instance, as the results of the Wilcoxon
comparisons between EGAL runs are not significant.
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5 Discussion

This research has explored a series of Active Learning approaches to an auditory
hierarchy labelling problem. It has been found that in this instance it is possible
to classify to 96.1% of maximum model accuracy by labelling only 1.7% of dataset
instances using the EGAL selection method. Using a random selection strategy it
is necessary to select 350 instances (11.7% of the total) to surpass this accuracy
level, however, as noted the large variance observed in scores from using the
random selection strategy makes this an unreliable method in this instance.
These results suggest EGAL is an effective method to minimise the manual
effort required to label audio instances with hierarchical labels.

DL techniques are acknowledged as state-of-the-art in the audio classifica-
tion domain [8] but are limited in terms of application to specific problems by
the existence of suitable, large, appropriately labelled datasets. In a real-world
scenario where potentially millions of labelled instances are required for DL ap-
plications the performance of EGAL in this instance suggests a potential for
significant savings on manual labelling effort in both time and money terms for
many different audio ML problems based on subjective human perception and
evaluation of environmental sounds.

This is particularly interesting given the significance accorded to the emer-
gence of datasets of this scale in other domains. For instance, the existence of
ImageNet [27], consisting of over 14 million labelled images, is considered an
important factor in the success of computer vision techniques and the influence
of the DL methods applied to them [46]. While a number of large audio datasets
are available [2, 33, 39] they are not universally appropriate for all audio ML
problems, particularly those where subjective judgement is required. Therefore,
the ability to quickly and efficiently take existing sound corpora and label them
for a bespoke categorization tasks has the potential to facilitate the study of
many more specific questions than would be the case if datasets were restricted
to those consisting of manually labelled instances. Auditory hierarchy applied to
the concept of a variable compression codec is one example of such a task.

6 Future Work

Our intention is to use these methods to label a large corpus and build a DL
classifier to improve classification accuracy on hierarchically labelled audio data,
ultimately validating machine labelled instances with human subjects. This ex-
tended corpus will also be suitable for use in deeper investigations on the func-
tioning of auditory hierarchy which has been noted in Section 2.1 to be influenced
by a series of factors such as sound context, the experience level of the subject
and the physical characteristics of the sound itself. Having in-depth knowledge
of the functioning of auditory hierarchy has application to media file delivery
strategies, auto-mixing applications and object-based audio broadcasting sce-
narios.

Further combinations of AL methods with Self Learning elements, where la-
bels are assigned to instances based on predictions from a model, or the concept
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of Co-Training, where labels are derived via a combination of prediction and
selection methods on different feature representations may also lead to improve-
ments.
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13. Demšar, J.: Statistical Comparisons of Classifiers over Multiple Data Sets. Journal
of Machine Learning Research 7, 1–30 (2006)

14. Espi, M., Fujimoto, M., Kinoshita, K., Nakatani, T.: Exploiting Spectro-temporal
Locality in Deep Learning Based Acoustic Event Detection. Eurasip Journal on
Audio, Speech, and Music Processing (2015). https://doi.org/10.1186/s13636-015-
0069-2



18 W. Coleman et al.

15. Field, A.: Discovering Statistics Using SPSS, vol. 58. SAGE Publications, London,
UK, 3rd edn. (2009). https://doi.org/10.1234/12345678

16. Google Home - Smart Speaker & Home Assistant - Google Store,
https://store.google.com/product/google home [Accessed: 2018-08-27]

17. Gruters, K.G., Murphy, D.L.K., Smith, D.W., Shera, C.A., Groh, J.M.: The
Eardrum Moves when the Eyes Move: A Multisensory Effect on the Mechanics
of Hearing. bioRxiv 156570 (2017). https://doi.org/10.1101/156570

18. Guastavino, C.: Everyday Sound Categorization. In: Virtanen, T., Plumbley, M.D.,
Ellis, D. (eds.) Computational Analysis of Sound Scenes and Events, pp. 183–213.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-63450-0 7

19. Haahr, M., Haahr, S.: Random.org (2018), https://www.random.org/media/ [Ac-
cessed: 2018-01-04]

20. Han, W., Coutinho, E., Ruan, H., Li, H., Schuller, B., Yu, X., Zhu, X.: Semi-
supervised Active Learning for Sound Classification in Hybrid Learning Environ-
ments. PloS one 11(9) (2016)

21. Han, Y., Park, J.: Convolutional Neural Networks with Binaural Representa-
tions and Background Subtraction for Acoustic Scene Classification. Tech. rep.,
DCASE2017 Challenge, Munich, Germany; 16th November (Sep 2017)

22. Heittola, T.: Datasets - Toni Heittola, https://www.cs.tut.fi/ heittolt/datasets [Ac-
cessed: 2019-08-28]

23. Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed, A.r., Jaitly, N., Senior,
A., Vanhoucke, V., Nguyen, P., Sainath, T., Kingsbury, B.: Deep Neural Net-
works for Acoustic Modeling in Speech Recognition: The Shared Views of Four
Research Groups. IEEE Signal Processing Magazine 29(6), 82–97 (Nov 2012).
https://doi.org/10.1109/MSP.2012.2205597

24. Hu, R., Delany, S.J., Mac Namee, B.: EGAL: Exploration Guided Active Learning
for TCBR. In: Proceedings of ICCBR. pp. 156–170. Alessandria, Italy; 19-22 July
(2010). https://doi.org/10.1007/978-3-642-14274-1 13

25. Hu, R., Mac Namee, B., Delany, S.J.: Off to a Good Start: Us-
ing Clustering to Select the Initial Training set in Active Learning. In:
Twenty-Third International FLAIRS Conference. Florida; 19-21 May (2010).
https://doi.org/10.21427/D7Q89W

26. Huron, D.: Sweet Anticipation: Music and the Psychology of Expectation. The
MIT Press, Cambridge, MA, USA (2006)

27. ImageNet, http://www.image-net.org/ [Accessed: 2019-09-23]
28. International Telecommunication Union: ITU-R BS.1116-3, Methods for the Sub-

jective Assessment of Small Impairments in Audio Systems. ITU-R Recommenda-
tion 1116(3) (2015)

29. International Telecommunication Union: ITU-R BS.1534-3, Method for the Sub-
jective Assessment of Intermediate Quality Level of Audio Systems. ITU-R Rec-
ommendation 1534-3 (2015)

30. Jones, E., Oliphant, T., Peterson, P., Others: SciPy: Open source scientific tools
for Python (2001), http://www.scipy.org/
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