5,838 research outputs found

    Gravitationally Lensed Gamma-Ray Bursts as Probes of Dark Compact Objects

    Get PDF
    If dark matter in the form of compact objects comprises a large fraction of the mass of the universe, then gravitational lensing effects on gamma-ray bursts are expected. We utilize BATSE and Ulysses data to search for lenses of different mass ranges, which cause lensing in the milli, pico, and femto regimes. Null results are used to set weak limits on the cosmological abundance of compact objects in mass ranges from 10−16^{-16} to 10−9^{-9} M⊙M_{\odot} . A stronger limit is found for a much discussed Ω=0.15\Omega = 0.15 universe dominated by black holes of masses ∌106.5M⊙\sim 10^{6.5} M_{\odot}, which is ruled out at the ∌\sim 90% confidence level.Comment: 14 pages, 4 figures, fixed minor corrections. Accepted for publication in ApJ(L

    No Evidence for Gamma-Ray Burst/Abell Cluster or Gamma- Ray Burst/Radio-Quiet Quasar Correlations

    Get PDF
    We examine the recent claims that cosmic gamma-ray bursts are associated with either radio-quiet quasars or Abell clusters. These associations were based on positional coincidences between cataloged quasars or Abell clusters, and selected events from the BATSE 3B catalog of gamma-ray bursts. We use a larger sample of gamma-ray bursts with more accurate positions, obtained by the 3rd Interplanetary Network, to re-evaluate these possible associations. We find no evidence for either.Comment: Accepted for publication in the Astrophysical Journa

    Cooling of 2 kW H subscript 2-O subscript 2 fuel cell

    Get PDF
    An extensive research and development program has been carried out to devise an improved method of removing waste heat of reaction from a developmental 2 kW hydrogen-oxygen fuel cell

    SGR 1806-20 Is a Set of Independent Relaxation Systems

    Get PDF
    The Soft Gamma Repeater 1806-20 produced patterns of bursts during its 1983 outburst that indicate multiple independent energy accumulation sites, each driven by a continuous power source, with sudden, incomplete releases of the accumulated energy. The strengths of the power sources and their durations of activity vary over several orders of magnitude.Comment: Accepted ApJLett, 15 pages, 3 figure

    Evidence for a Fast Decline in the Progenitor Population of Gamma Ray Bursts and the Nature of their Origin

    Get PDF
    We show that the source population of long gamma-ray bursts (GRBs) has declined by at least a factor of 12 (at the 90% confidence level) since the early stages of the Universe (z∌2−3z \sim 2 - 3). This result has been obtained using the combined BATSE and \it Ulysses \rm GRB brightness distribution and the detection of four GRBs with known redshifts brighter than 1052^{52} erg s−1^{-1} in the 50 - 300 keV range at their peak. The data indicate that the decline of the GRB source population is as fast as, or even faster than, the measured decline of the star formation rate. Models for the evolution of neutron star binaries predict a significantly larger number of apparently bright GRBs than observed. Thus our results give independent support to the hypernova model, which naturally explains the fast decline in the progenitor population.Comment: 7 pages, 6 figures, submitted to ApJ, added reference

    Nature of fault planes in solid neutron star matter

    Get PDF
    The properties of tectonic earthquake sources are compared with those deduced here for fault planes in solid neutron-star matter. The conclusion that neutron-star matter cannot exhibit brittle fracture at any temperature or magnetic field is significant for current theories of pulsar glitches, and of the anomalous X-ray pulsars and soft-gamma repeaters.Comment: 5 AAS LaTeX pages 1 eps figur

    Gamma Ray Burst Host Galaxies Have `Normal' Luminosities

    Get PDF
    The galactic environment of Gamma Ray Bursts can provide good evidence about the nature of the progenitor system, with two old arguments implying that the burst host galaxies are significantly subluminous. New data and new analysis have now reversed this picture: (A) Even though the first two known host galaxies are indeed greatly subluminous, the next eight hosts have absolute magnitudes typical for a population of field galaxies. A detailed analysis of the 16 known hosts (ten with red shifts) shows them to be consistent with a Schechter luminosity function with R∗=−21.8±1.0R^{*} = -21.8 \pm 1.0 as expected for normal galaxies. (B) Bright bursts from the Interplanetary Network are typically 18 times brighter than the faint bursts with red shifts, however the bright bursts do not have galaxies inside their error boxes to limits deeper than expected based on the luminosities for the two samples being identical. A new solution to this dilemma is that a broad burst luminosity function along with a burst number density varying as the star formation rate will require the average luminosity of the bright sample (>>6×1058ph⋅s−16 \times 10^{58} ph \cdot s^{-1} or >>1.7×1052⋅erg⋅s−11.7 \times 10^{52} \cdot erg \cdot s^{-1}) to be much greater than the average luminosity of the faint sample (∌1058ph⋅s−1\sim 10^{58} ph \cdot s^{-1} or ∌3×1051erg⋅s−1\sim 3 \times 10^{51} erg \cdot s^{-1}). This places the bright bursts at distances for which host galaxies with a normal luminosity will not violate the observed limits. In conclusion, all current evidence points to GRB host galaxies being normal in luminosity.Comment: 18 pages, 3 figures, Submitted to ApJLet

    The Interplanetary Network Supplement to the BeppoSAX Gamma-Ray Burst Catalogs

    Get PDF
    Between 1996 July and 2002 April, one or more spacecraft of the interplanetary network detected 787 cosmic gamma-ray bursts that were also detected by the Gamma-Ray Burst Monitor and/or Wide-Field X-Ray Camera experiments aboard the BeppoSAX spacecraft. During this period, the network consisted of up to six spacecraft, and using triangulation, the localizations of 475 bursts were obtained. We present the localization data for these events.Comment: 89 pages, 3 figures. Submitted to the Astrophysical Journal Supplement Serie

    Stereoscopic observations of hard x ray sources in solar flares made with GRO and other spacecraft

    Get PDF
    Since the launch of the Gamma Ray Observatory (GRO) in Apr. 1991, the Burst and Transient Source Experiment (BATSE) instrument on GRO has recorded a large number of solar flares. Some of these flares have also been observed by the Gamma-Ray Burst Detector on the Pioneer Venus Orbiter (PVO) and/or by the Solar X-Ray/Cosmic Gamma-Ray Burst Experiment on the Ulysses spacecraft. A preliminary list of common flares observed during the period May-Jun. 1991 is presented and the possible joint studies are indicated

    The distances of short-hard GRBs and the SGR connection

    Full text link
    We present a search for nearby (D<100 Mpc) galaxies in the error boxes of six well-localized short-hard gamma-ray bursts (GRBs). None of the six error boxes reveals the presence of a plausible nearby host galaxy. This allows us to set lower limits on the distances and, hence, the isotropic-equivalent energy of these GRBs. Our lower limits are around 1×10491 \times 10^{49} erg (at 2σ2\sigma confidence level); as a consequence, some of the short-hard GRBs we examine would have been detected by BATSE out to distances greater than 1 Gpc and therefore constitute a bona fide cosmological population. Our search is partially motivated by the December 27, 2004 hypergiant flare from SGR 1806-20, and the intriguing possibility that short-hard GRBs are extragalactic events of a similar nature. Such events would be detectable with BATSE to a distance of \~50 Mpc, and their detection rate should be comparable to the actual BATSE detection rate of short-hard GRBs. The failure of our search, by contrast, suggests that such flares constitute less than 15% of the short-hard GRBs (<40% at 95% confidence). We discuss possible resolutions of this discrepancy.Comment: Enlarged sample of bursts; ApJ in pres
    • 

    corecore