91 research outputs found

    Ontogeny of the circadian system during embryogenesis in rainbow trout (Oncorhynchus mykiss) and the effect of prolonged exposure to continuous illumination on daily rhythms of per1, clock, and aanat2 expression

    Get PDF
    It is widely held that the development of the circadian system during embryogenesis is important for future survival of an organism. Work in teleosts has been, to date, limited to zebrafish, which provides little insight into the diversity of this system within such a large vertebrate class. In this study, we analyzed the diel expression of per1, clock, and aanat2 in unfertilized rainbow trout oocytes and embryos maintained under either a 12:12 light:dark (LD) cycle or continuous illumination (LL) from fertilization. 24-h profiles in expression were measured at fertilization as well as 8, 21 42, and 57 days postfertilization (dpf). Both per1 and clock were expressed in unfertilized oocytes and all embryonic stages, while aanat2 expression was only measureable from 8 dpf. A reduction in both per1 and clock mean expression level between unfertilized oocytes/0-1dpf embryos and 8-9dpf embryos was suggestive of a transition from maternal RNA to endogenous mRNA expression. While aanat2 expression was not clearly associated with photic conditions, photoperiod treatment did alter the expression of per1 and clock expression/rhythmicity from as early as 8 dpf (per1), which could suggest the presence and functionality of an as yet unidentified “photoreceptor”. As a whole, this work demonstrates that clock systems are present and functional during embryonic development in rainbow trout. Further studies of their expression and regulation will help understand how the environment interacts with embryonic development in the species

    The dopaminergic system in patients with functional dyspepsia analysed by single photon emission computed tomography (SPECT) and an alpha-methyl-para-tyrosine (AMPT) challenge test

    Get PDF
    Functional dyspepsia (FD) is a chronic condition characterized by upper abdominal symptoms without an identifiable cause. While the serotonergic system is thought to play a key role in the regulation of gut physiology, the role of the dopaminergic system, which is important in the regulation of visceral pain and stress, is under-studied. Therefore, this study investigated the dopaminergic system and its relationship with drinking capacity and symptoms in FD patients. In FD patients and healthy volunteers (HV) the dopaminergic system was investigated by in-vivo assessment of central dopamine D2 receptors (D2Rs) with [I-123]IBZM SPECT and by an acute, but reversible, dopamine depletion alpha-methyl-para-tyrosine (AMPT) challenge test. A nutrient drink test was performed to investigate the association between maximal ingested volume, evoked symptoms, and D2Rs. The HV subjects comprised 12 women and 8 men (mean age 31 +/- 3 years), and the FD patients comprised 5 women and 3 men (mean age 39 +/- 5 years). The FD patients had a lower left plus right average striatal binding potential (BPNP) for the caudate nucleus (p = 0.02), but not for putamen (p = 0.15), which in the FD patients was correlated with maximal ingested volume (r = 0.756, p = 0.03). The D2R BPNP in the putamen was correlated with nausea (r = 0.857, p = 0.01). The acute dopamine depletion test, however, failed to reveal differences in prolactin release between the FD patients and the HV subjects. These preliminary data suggest that chronic rather than acute alterations in the dopaminergic system may be involved in the pathogenesis of FD. Further studies are required to reproduce our novel findings and to evaluate to what extent the dopaminergic changes may be secondary to abnormalities in serotonergic pathway

    Neuroadaptations in Human Chronic Alcoholics: Dysregulation of the NF-ÎşB System

    Get PDF
    Anna Ökvist is with Karolinska Institute, Sofia Johansson is with Karolinska Institute, Alexander Kuzmin is with Karolinska Institute, Igor Bazov is with Karolinska Institute, Roxana Merino-Martinez is with Karolinska Institute, Igor Ponomarev is with UT Austin, R. Dayne Mayfield is with UT Austin, R. Adron Harris is with UT Austin, Donna Sheedy is with University of Sydney, Therese Garrick is with University of Sydney, Clive Harper is with University of Sydney, Yasmin L. Hurd is with Mount Sinai School of Medicine, Lars Terenius is with Karolinska Institute, Tomas J. Ekström is with Karolinska Institute, Georgy Bakalkin is with Karolinska Institute and Uppsala University, Tatjana Yakovleva is with Karolinska Institute and Uppsala University.Background -- Alcohol dependence and associated cognitive impairments apparently result from neuroadaptations to chronic alcohol consumption involving changes in expression of multiple genes. Here we investigated whether transcription factors of Nuclear Factor-kappaB (NF-κB) family, controlling neuronal plasticity and neurodegeneration, are involved in these adaptations in human chronic alcoholics. Methods and Findings -- Analysis of DNA-binding of NF-κB (p65/p50 heterodimer) and the p50 homodimer as well as NF-κB proteins and mRNAs was performed in postmortem human brain samples from 15 chronic alcoholics and 15 control subjects. The prefrontal cortex involved in alcohol dependence and cognition was analyzed and the motor cortex was studied for comparison. The p50 homodimer was identified as dominant κB binding factor in analyzed tissues. NF-κB and p50 homodimer DNA-binding was downregulated, levels of p65 (RELA) mRNA were attenuated, and the stoichiometry of p65/p50 proteins and respective mRNAs was altered in the prefrontal cortex of alcoholics. Comparison of a number of p50 homodimer/NF-κB target DNA sites, κB elements in 479 genes, down- or upregulated in alcoholics demonstrated that genes with κB elements were generally upregulated in alcoholics. No significant differences between alcoholics and controls were observed in the motor cortex. Conclusions -- We suggest that cycles of alcohol intoxication/withdrawal, which may initially activate NF-κB, when repeated over years downregulate RELA expression and NF-κB and p50 homodimer DNA-binding. Downregulation of the dominant p50 homodimer, a potent inhibitor of gene transcription apparently resulted in derepression of κB regulated genes. Alterations in expression of p50 homodimer/NF-κB regulated genes may contribute to neuroplastic adaptation underlying alcoholism.This work was supported by grants from the AFA Forsäkring to AK, YLH, TJE and GB, the Research Foundation of the Swedish Alcohol Retail Monopoly (SRA) and Karolinska Institutet to AK, TJE and GB, and the Swedish Science Research Council and the Swedish National Drug Policy Coordinator to GB. The Australian Brain Donor Programs NSW Tissue Resource Centre was supported by The University of Sydney, National Health and Medical Research Council of Australia, Neuroscience Institute of Schizophrenia and Allied Disorders, National Institute of Alcohol Abuse and Alcoholism and NSW Department of Health.Waggoner Center for Alcohol and Addiction Researc

    Laparoscopic Anatomy

    No full text
    • …
    corecore